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Preamble
Today’s view on computers and processors

What computer a typical first year Computer Science (CS) students owns?
I You name it! But all are x86-64 based!

What processors do typical first year CS students know?
I Intel Core Ix, sometimes named x86 (or x86-64 for the connoisseurs)
I AMD Ryzen, but wait, this is also an x86!
I Atom, that’s in my tablet, x86, uh, ...

Other devices
they know phone brands, but not the processors in them

Intel did it right!

1991 1992 1993 ... 2015 2016 2017
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Preamble

Intel did it right, but ...
I "[x86] mov is Turing-complete", Stephen Dolan, 2013.

Actual code generator by Christopher Domas
https://github.com/xoreaxeaxeax/movfuscator

But wait, why bother with instructions?
I "[x86] Page-faults are Turing-complete", Julian Bangert and Sergey Bratus,

2015.
Actual code generator https://github.com/jbangert/trapcc

Although x86 is the mainstream desktop computer architecture, it may be worth
using something else as a pedagogical vehicule!
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Introduction

Teaching computer engineering using RISC-V

Target students
Bologna style L3/M1/M2 in Computer Science or Electrical Engineering

In reality engineering schools in Grenoble
Ensimag, computer science
Phelma, electronic and micro-electronic engineering
Polytech Grenoble, electronics engineering and industrial IT

Goal
Unifying a set of classes using various processors under the RISC-V umbrella
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Overview of the curriculum

Basic computer architecture
(Computer Science, 3rd year, ≈250 students, Electronics Engineering, 5th year,
≈20 students)
I digital circuit design for computer scientists
I ISA interpretation using a finite state machine + data-path

Assembly language programming
(Computer Science, 3rd year, ≈250 students)
I basic instruction usage
I function calling conventions and C ABI
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Overview of the curriculum

Computer architecture
(Computer Science, 4th year, ≈40 students)
I 5 pipeline stages processor
I multiprocessor and atomic operations

Operating system implementation
(Computer Science, 4th year, ≈75 students)
I boot, interrupt, kernel threads
I virtual memory, processes
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Overview of the curriculum

System level design in SystemC
(Computer Science, 5th year, ≈20 students)
I hardware modeling in SystemC, transaction level modeling
I modeling in SystemC with native or cross-compiled software

HW/SW system integration
(Electrical Engineering, 5th year, ≈40 students)
I performance analysis of a cache-based multiprocessing system
I HW/SW integration on FPGA
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Overview of the curriculum

L3/Bachelor M1/Master M2/Master
Ensimag Basic computer

architecture
Operating system
implementation

System level design
in SystemC

Assembly language
programming

Computer
architecture

Polytech Assembly language
programming
Basic computer
architecture

Phelma HW/SW system
integration
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Basic computer architecture

Class and practical objectives
Write VHDL code interpreting instructions to understand why a computer needs
to be powered, how it might execute a program, and why it is not indefinitely fast

What do we provide the students?
I VHDL of an FSM squeleton and a

data-path with a few missing
parts

I ordered list of instructions
(encoding+behavior) to
implement

I test environment to check their
implementation
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Basic computer architecture

What do we expect from the students?
I Proper decoding and execution of instructions with FSM+data-path
I Add missing parts in the data-path

I condition computations for branches
I control and status registers
I interruptions

I Mapping on Xilinx FPGA board with 100 MHz minimal frequency target
I Own unitary test for each instruction

I shall not depend upon future implemented instructions
I are pretty easy develop as the micro-architecture is naïve
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Basic computer architecture
MIPS I neat, not so hype anymore
I all instructions are 32-bit
I 38 instructions including eret
I 3 instruction formats
I 5 immediate formats, zero or sign

extended, 16-bit or 26-bit
I reg/reg instructions update rd,

reg/imm instructions update rt
⇒ sllv and srav instead of slli/srai

I delay slot, hidden from the students
I branch target computed using pc + 4

⇒ both former specificities assume
pipeline implementations

RISC-V rv32i stylish and trendy
I all instructions are 32-bit
I 32 integer instruction including mret
I 6 instruction formats
I 6 immediate formats, sign extended,

weirdly built, 12-bit or 20-bit
I all instructions update rd

I no delay slot
I branch target computed using pc as is

⇒ no specific implementation strategy
inferred
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Basic computer architecture

Register file

AD
x

y
+

Control Status Register

x

y
+

x

y
+

PC

g

x

y

+/-

x

y

logical

x

y

shifter

JCOND/SLT

IR

f

Data-Path Memory

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 16 / 47 >



Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture

Conclusion
Complexity is alike, but RISC-V has a few interesting features:
I all instructions update rd
I no delay slot
I branch computed using pc directly
I strange ways to compute the immediats

example: branch o�set⇐ (IR20
31 ‖ IR7 ‖ IR30...25 ‖ IR11...8 ‖ 0)

And is much more attractive to our students
google "RISC-V processor" : "Environ 9.050.000 résultats (0,60 secondes)"
google "mips processor" : "Environ 3.380.000 résultats (0,62 secondes)"

Small demo
Sneaking into some code
FPGA demo
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Introduction to asm programming (3rd year, ≈250 students)

Objective of the class
I writing simple programs in asm
I understand variable classes: data, heap, stack
I systematically translate ’C’ statements in asm
I ABI oriented towards function calling conventions

What did we do in the past?
I used an x86 subset

guaranteed headache, 13 di�erent ABI running in the wild!
I moved to MIPS ISA, excluding unaligned word accesses, and MIPS o32 ABI
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Introduction to asm programming (3rd year, ≈250 students)

What do we provide the students?
I Cross-development environment
I QEMU mimicking system of the “Basic Computer Architecture” class
I C source code of the exercises

What do we expect from the students?
I assembly code written as literally as possible
e.g. as generated by gcc -O0

I agile usage of the cross-dev environment
particularly gdb using remote connection on QEMU

I ability to call and be called from C functions
I understand low-level interrupt service routines
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Introduction to asm programming (3rd year, ≈250 students)

MIPS I ABI in a nutshell
I all instructions but stores have their results in right-hand-side
I registers have hardware and software names

$0, ..., $31 vs $zero, $at, $v0, ..., $a0, ..., $t0, ..., $s0, ...

I register $zero writable but always reads as zero
I 4 first arguments in $a0, ..., $a3 and return value in $v0

I all jumps followed by a nop to avoid explaining the delay slot
I macros make use of the implicit register $1 ($at)
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Introduction to asm programming (3rd year, ≈250 students)
I macro accept weirdly written asm lines

addi $t0, 0xf00d⇒ addi $t0, $t0, 0xf00d
lw and sw accept constants and symbols as arguments
lb $t0, 0xdeadbeef⇒ li $t0, 0xdeadbeef / lb $t0, 0($t0)
sw $t0, variable ⇒ la $at, variable / sw $t0, 0($at)

But who knows if that is what the student meant to write ???
I sign extended or zero extended 16-bit immediates

visual instruction type and constant binary decoding easy for the teacher
addi $v0,$v0,0xffffdead ⇒ “operand out of range” although sign extended
ori $v0,$v0,0xdead ⇒ no error although zero extended

I interrupt/exception/traps all jump at same address
⇒ everything done in software

I access to cause, status and timer related registers using two simple
instructions mfc0/mtc0
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Introduction to asm programming (3rd year, ≈250 students)

RISC-V psABI quite similar in spirit to MIPS
I all instructions but stores have their results in right-hand-side
I registers have hardware and software names

x0, ..., x31 vs zero, ra, ..., a0, ..., t0, ..., s0, ...

I register zero writable but always reads as zero
I 20 and 12 bit immediates always sign extend

addi x31, x31, 0xbad⇒ "invalid operand error"
0x00000bad 6= 0xfffffbad

I even stranger:
li x31, 0xdeadbeef => lui x31, 0xdeadc

addi x31, x31, 0xfffffeef

I sw and lw accept a symbol as argument, but not a constant
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Introduction to asm programming (3rd year, ≈250 students)
I 8 first arguments in a0, ..., a7 and return value in a0
I no delay slot to hide
I access to cause, status and timer related registers using csrrw instructions
I only machine mode interrupt/exception/traps presented,

configuration without vectors⇒ everything done in software
I CLINT and PLIC make things more complex than MIPS to handle simple timer
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Introduction to asm programming (3rd year, ≈250 students)

Stack layouts
MIPS I r3000

high 5th parameter other ones above
addresses room for $a3 needed only if callee
↓ room for $a2 wants them back after
↓ room for $a1 calling an other function
↓ room for $a0 $sp in caller (f)
↓ $ra return address (g)
↓ registers to be
↓ saved
↓ local variables
↓ parameter n− 1 when calling
↓ · · · an other
↓ parameter 5 function (h)
↓ room for $a3
↓ room for $a2

low room for $a1 for the next call (h)
addresses room for $a0 $sp in callee (g)

RISC-V rv32i
high addresses f local variables sp in calller (f)

↓ ra return address
↓ other registers
↓ to save
↓ g local variables
↓ parameter n− 1 preparing call to
↓ ... next function h
↓ parameter 8 sp in callee (g)

low addresses ...

A bit easier to explain to students
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Introduction to asm programming (3rd year, ≈250 students)

Conclusion
Complexity is alike, but RISC-V rv32i has a few interesting features:
I (very) low integer instruction count
I integer calling conventions pretty simple for fixed number of parameters
I no delay slot
I an unusual pc-relative instruction auipc

Small demo
Small function example
QEMU demo
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Operating System Implementation (4th year, ≈75 students)

Objective of the class
I understand what happens when a computer is turned on
I understand virtual memory to physical memory translation
I learn to implement:

boot, kernel threads,
page tables, frame allocation (overlays⇒ no file system, no page faults)
user processes, queues, shared memory, ...

I do all that on RISC-V 64 using QEMU sifive_u board

What did we do (and still do) before?
I originally developed for x86-32
I hiding quite a few stu� under the carpet
I still in use: only 2 groups over 8 did it on RISC-V last year
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Operating System Implementation (4th year, ≈75 students)

What do we provide the students?
I skeleton of code, with set of (complex) Makefiles
I header files with helper functions

inline asm stu�, Linux priority queues, ...
I ≈ 15 userland tests stressing the implementation

What do we expect from the students?
I handle timer interrupts
I build all OS functions first in kernel mode

starting by process creation and context switch
I add (limited) support for virtual memory
I understand that there is one page table structure per process
I add system calls to wrap the kernel OS functions
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Operating System Implementation (4th year, ≈75 students)

What changes when using RISC-V
I move to 64-bit
I boot phase can be fully written by the students

no gory details of x86 legacy to skip over
avoid hardwired stu�s that are hardly explainable: idt, gdt, tss, ...
⇒ still need to configure the pmp areas

I simpler interruption mechanism and implementation of system calls
no implicit push of things on stack
⇒ interruption setup a bit complex: m[ei]deleg, shadow registers, ...
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Operating System Implementation (4th year, ≈75 students)
And page tables, somehow more complex on RISC-V

x86 page tables RISC-V SV39 page tables
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Operating System Implementation (4th year, ≈75 students)

Conclusion
x86-32 vs RISC-V 64 fight not over!

x86 students like x86 as they know its name
x86 page table structure
x86 see only kernel and user mode

RISC-V boot process from start address user mode
RISC-V no weird hw tables to update here and there
RISC-V no implicit stu� pushed on or popped from the stack

Overall di�erent, allowing to go a bit more in depth on hw related matters

Small demo
Context creation and context switch
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Computer architecture (4th year, ≈35 students)

Objective of the class
I detail how simple 3/4/5/6 stage pipeline processors work

bypasses, interlocks
I explain cache coherency and memory consistency issues and solutions

MSI, MESI protocols, plus atomic operation support

What did we do (and still do) before?
I CAAQA with 5-stage pipeline MIPS, like everyone does!

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 31 / 47 >



Preamble Introduction Overview of the curriculum Class specifics Take away

Computer architecture (4th year, ≈35 students)

Main changes due to RISC-V in classical 5-stage pipeline
On branches
I target is pc + offset (was pc + 4 + offset)
I non-conditional branches have no delay slot
⇒ kill (at least) 1 following instruction

I conditional branches have no delay slot either,
have “complex” conditions and resolved late
⇒ kill 2 following instructions if branch taken

⇒ Quite expensive, ... or add a branch predictor
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Computer architecture (4th year, ≈35 students)
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Computer architecture (4th year, ≈35 students)

Conclusion
Simple 5-stage pipeline implementation of RISC-V is:
I less e�cient or harder

branch instructions will increase the CPI
or a branch predictor must be added

I a bit bigger, because pc must be propagated
I but the critical path should be shorter

Numerous atomic memory operations to present

No demo
Lucky you!
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System level design in SystemC (5th year, ≈20 students)

Objective of the class
Class targeting an in-depth presentation of SystemC TLM concepts and modeling
I introduce the notion of virtual prototype
I show how to model and simulate a digital system in SystemC before its

actual implementation
I using "native" simulation, through dedicated hardware abstraction layer APIs
I using an instruction accurate simulator

I build the same system on a (cheap) FPGA board and run the same software
just use another implementation of the HAL

What did we do before?
I Originally developed around Xilinx’ microblaze

I SystemC model from the SoCLib library
I microblaze RTL model from Xilinx
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System level design in SystemC (5th year, ≈20 students)

BUS

CPU ITC

BRAM GPIO

VGA TIMER
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System level design in SystemC (5th year, ≈20 students)

Using RISC-V
Interest
I very parameterizable architecture
I compressed instructions

But needs
I simple SystemC compatible ISS
⇒ developed a SoCLib rv32imafc model (machine mode only)

I synthesizable core on Xilinx FPGAs
⇒ have (a very very slow) one from Basic Architecture class, good enough

Note that keeping in pace with Vivado hurts, ...

Small demo
Native and cross-compiled top level
System execution
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HW/SW System Integration with RISC-V (5th year, ≈40 students)

Objective of the class
Teaching the link between HW and SW in SoCs
I SW environment (assembly, linker, ISA simul., compil., debug)
I HW environment (SoC generation, emulation, . . . )
I exceptions, interrupts and traps
I multi-tasking, multi-processing and memory coherence
I development and integration of a custom peripheral with its HAL
I HW and SW mapping⇒ C application on FPGA
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HW/SW System Integration with RISC-V (5th year, ≈40 students)

Needs
I tunable, fast to simulate

HW/SW platform
I open source and

synthesizable HW/SW SoC
⇒ FPGA evaluation

I platform widely accepted
and well supported

⇒ Berkeley’s RISC-V based
Rocket Chip SoC generator
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HW/SW System Integration with RISC-V (5th year, ≈40 students)
Design Flow

SW components
source code
in C *.c *.h

SW components
source code in

Assembly *.s *.S

Spike

HW components
source code

in CHISEL *.scala

CHISEL
Compiler

RISCV-GCC Compiler

Verilog
RTL

       C Emulator

Test cases/bench
in C++

Verilator

Xilinx Vivado

                FPGA         
        Implementation

Bitstream

        ASIC
        Implementation

HW components
source code

in Verilog *v *.vh

RISC-V Binary

Log / Results               Waveforms
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HW/SW System Integration with RISC-V (5th year, ≈40 students)

Show impact of array placement in memory on L1 collision
L1 data-cache: 8 kB, 256 blocks, 32-byte each
x, y arrays of 4096 elements of 32-bit
address of x is 0x8101_0000, address of y is 0x8101_4000

loop: for (i = 0; i < 4096; i++)
s += x[i] + y[i];

No data reuse
Only line “prefetch” e�ect

I paper analysis of execution to evaluate dcache miss rate
I execution with spike to gather statistics
I propose a better placement of y to avoid collision

hint: make sure x and y never share a line

Small demo
Cache statistics with spike, with the bad choice and a good choice
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HW/SW System Integration with RISC-V (5th year, ≈40 students)

Real-time multi-tasking
Students
I analyze and complete assembly code

I memory tasks allocation, init stacks, ...
I save/restore contexts, switch tasks, scheduling, ...
I time allocation: give #ticks per task

I code two simple tasks in C, e.g. increment in turn a shared variable
I simulate and debug using Spike simulator: functional validation
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HW/SW System Integration with RISC-V (5th year, ≈40 students)

Real-time multi-tasking
I simulate the HW using the cycle-accurate bit-accurate C++ Emulator

T1 = T2 = 100 ticks
Executing task

T2 T1

Timer interrupts

T1 = 100 ticks, T2 = 300 ticks
T2T1
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Take away
Momentum around RISC-V brings in some freshness

Opportunity to renew classes
Not a revolution: basics are basics, but:
I benefit from the hype
I make student aware that x86-64 doesn’t rule them all
I escape complex CISC or complex RISC ISA

Benefit for teachers
I clean and orthogonal ISA (at least for rv32i)
I simple integer calling conventions
I stable cross-development tools, including simulators
I actual implementations on FPGA (even too many perhaps!) and ASIC

⇒ useful replacement to a mix of x86/MIPS/whatever all along the curriculum
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Take away

Fear
Are we taking a reckless risk(-v)?
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Thanks

Students/Engineers/PhD that have
contributed to the classes
I Noureddine Ait-Said (IRT)
I Mathieu Barbe (TIMA)
I Amaury Butaux (TIMA)
I Marius Leblanc (TIMA)
I Loïc Jovanovic (TIMA)
I Robin Stieglitz (IDEX)
I Arthur Vianes (IDEX)
I Benoît Wallon (TIMA)

Sponsors
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