
Teaching basic computer architecture, assembly language
programming, and operating system design using RISC-V
Liliana Andrade, Mounir Benabdenbi,
Olivier Muller, Frédéric Rousseau,
Frédéric Pétrot
� tima.imag.fr/sls/people/petrot
R frederic.petrot@univ-grenoble-alpes.fr

http://tima.imag.fr/sls/people/petrot/
mailto: frederic.petrot@univ-grenoble-alpes.fr

Preamble Introduction Overview of the curriculum Class specifics Take away

Outline

1 Preamble

2 Introduction

3 Overview of the curriculum

4 Class specifics

5 Take away

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 2 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Preamble
Today’s view on computers and processors

What computer a typical first year Computer Science (CS) students owns?
I You name it! But all are x86-64 based!

What processors do typical first year CS students know?
I Intel Core Ix, sometimes named x86 (or x86-64 for the connoisseurs)
I AMD Ryzen, but wait, this is also an x86!
I Atom, that’s in my tablet, x86, uh, ...

Other devices
they know phone brands, but not the processors in them

Intel did it right!

1991 1992 1993 ... 2015 2016 2017

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 3 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Preamble

Intel did it right, but ...
I "[x86] mov is Turing-complete", Stephen Dolan, 2013.

Actual code generator by Christopher Domas
https://github.com/xoreaxeaxeax/movfuscator

But wait, why bother with instructions?
I "[x86] Page-faults are Turing-complete", Julian Bangert and Sergey Bratus,

2015.
Actual code generator https://github.com/jbangert/trapcc

Although x86 is the mainstream desktop computer architecture, it may be worth
using something else as a pedagogical vehicule!

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 4 / 47 >

https://github.com/xoreaxeaxeax/movfuscator
https://github.com/jbangert/trapcc

Preamble Introduction Overview of the curriculum Class specifics Take away

Outline

1 Preamble

2 Introduction

3 Overview of the curriculum

4 Class specifics

5 Take away

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 5 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction

Teaching computer engineering using RISC-V

Target students
Bologna style L3/M1/M2 in Computer Science or Electrical Engineering

In reality engineering schools in Grenoble
Ensimag, computer science
Phelma, electronic and micro-electronic engineering
Polytech Grenoble, electronics engineering and industrial IT

Goal
Unifying a set of classes using various processors under the RISC-V umbrella

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 6 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Outline

1 Preamble

2 Introduction

3 Overview of the curriculum

4 Class specifics

5 Take away

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 7 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Overview of the curriculum

Basic computer architecture
(Computer Science, 3rd year, ≈250 students, Electronics Engineering, 5th year,
≈20 students)
I digital circuit design for computer scientists
I ISA interpretation using a finite state machine + data-path

Assembly language programming
(Computer Science, 3rd year, ≈250 students)
I basic instruction usage
I function calling conventions and C ABI

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 8 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Overview of the curriculum

Computer architecture
(Computer Science, 4th year, ≈40 students)
I 5 pipeline stages processor
I multiprocessor and atomic operations

Operating system implementation
(Computer Science, 4th year, ≈75 students)
I boot, interrupt, kernel threads
I virtual memory, processes

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 9 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Overview of the curriculum

System level design in SystemC
(Computer Science, 5th year, ≈20 students)
I hardware modeling in SystemC, transaction level modeling
I modeling in SystemC with native or cross-compiled software

HW/SW system integration
(Electrical Engineering, 5th year, ≈40 students)
I performance analysis of a cache-based multiprocessing system
I HW/SW integration on FPGA

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 10 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Overview of the curriculum

L3/Bachelor M1/Master M2/Master
Ensimag Basic computer

architecture
Operating system
implementation

System level design
in SystemC

Assembly language
programming

Computer
architecture

Polytech Assembly language
programming
Basic computer
architecture

Phelma HW/SW system
integration

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 11 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Outline

1 Preamble

2 Introduction

3 Overview of the curriculum

4 Class specifics

5 Take away

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 12 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture

Class and practical objectives
Write VHDL code interpreting instructions to understand why a computer needs
to be powered, how it might execute a program, and why it is not indefinitely fast

What do we provide the students?
I VHDL of an FSM squeleton and a

data-path with a few missing
parts

I ordered list of instructions
(encoding+behavior) to
implement

I test environment to check their
implementation

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 13 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture

What do we expect from the students?
I Proper decoding and execution of instructions with FSM+data-path
I Add missing parts in the data-path

I condition computations for branches
I control and status registers
I interruptions

I Mapping on Xilinx FPGA board with 100 MHz minimal frequency target
I Own unitary test for each instruction

I shall not depend upon future implemented instructions
I are pretty easy develop as the micro-architecture is naïve

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 14 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture
MIPS I neat, not so hype anymore
I all instructions are 32-bit
I 38 instructions including eret
I 3 instruction formats
I 5 immediate formats, zero or sign

extended, 16-bit or 26-bit
I reg/reg instructions update rd,

reg/imm instructions update rt
⇒ sllv and srav instead of slli/srai

I delay slot, hidden from the students
I branch target computed using pc + 4

⇒ both former specificities assume
pipeline implementations

RISC-V rv32i stylish and trendy
I all instructions are 32-bit
I 32 integer instruction including mret
I 6 instruction formats
I 6 immediate formats, sign extended,

weirdly built, 12-bit or 20-bit
I all instructions update rd

I no delay slot
I branch target computed using pc as is

⇒ no specific implementation strategy
inferred

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 15 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture

Register file

AD
x

y
+

Control Status Register

x

y
+

x

y
+

PC

g

x

y

+/-

x

y

logical

x

y

shifter

JCOND/SLT

IR

f

Data-Path Memory

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 16 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Basic computer architecture

Conclusion
Complexity is alike, but RISC-V has a few interesting features:
I all instructions update rd
I no delay slot
I branch computed using pc directly
I strange ways to compute the immediats

example: branch o�set⇐ (IR20
31 ‖ IR7 ‖ IR30...25 ‖ IR11...8 ‖ 0)

And is much more attractive to our students
google "RISC-V processor" : "Environ 9.050.000 résultats (0,60 secondes)"
google "mips processor" : "Environ 3.380.000 résultats (0,62 secondes)"

Small demo
Sneaking into some code
FPGA demo

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 17 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

Objective of the class
I writing simple programs in asm
I understand variable classes: data, heap, stack
I systematically translate ’C’ statements in asm
I ABI oriented towards function calling conventions

What did we do in the past?
I used an x86 subset

guaranteed headache, 13 di�erent ABI running in the wild!
I moved to MIPS ISA, excluding unaligned word accesses, and MIPS o32 ABI

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 18 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

What do we provide the students?
I Cross-development environment
I QEMU mimicking system of the “Basic Computer Architecture” class
I C source code of the exercises

What do we expect from the students?
I assembly code written as literally as possible
e.g. as generated by gcc -O0

I agile usage of the cross-dev environment
particularly gdb using remote connection on QEMU

I ability to call and be called from C functions
I understand low-level interrupt service routines

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 19 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

MIPS I ABI in a nutshell
I all instructions but stores have their results in right-hand-side
I registers have hardware and software names

$0, ..., $31 vs $zero, $at, $v0, ..., $a0, ..., $t0, ..., $s0, ...

I register $zero writable but always reads as zero
I 4 first arguments in $a0, ..., $a3 and return value in $v0

I all jumps followed by a nop to avoid explaining the delay slot
I macros make use of the implicit register $1 ($at)

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 20 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)
I macro accept weirdly written asm lines

addi $t0, 0xf00d⇒ addi $t0, $t0, 0xf00d
lw and sw accept constants and symbols as arguments
lb $t0, 0xdeadbeef⇒ li $t0, 0xdeadbeef / lb $t0, 0($t0)
sw $t0, variable ⇒ la $at, variable / sw $t0, 0($at)

But who knows if that is what the student meant to write ???
I sign extended or zero extended 16-bit immediates

visual instruction type and constant binary decoding easy for the teacher
addi $v0,$v0,0xffffdead ⇒ “operand out of range” although sign extended
ori $v0,$v0,0xdead ⇒ no error although zero extended

I interrupt/exception/traps all jump at same address
⇒ everything done in software

I access to cause, status and timer related registers using two simple
instructions mfc0/mtc0

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 21 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

RISC-V psABI quite similar in spirit to MIPS
I all instructions but stores have their results in right-hand-side
I registers have hardware and software names

x0, ..., x31 vs zero, ra, ..., a0, ..., t0, ..., s0, ...

I register zero writable but always reads as zero
I 20 and 12 bit immediates always sign extend

addi x31, x31, 0xbad⇒ "invalid operand error"
0x00000bad 6= 0xfffffbad

I even stranger:
li x31, 0xdeadbeef => lui x31, 0xdeadc

addi x31, x31, 0xfffffeef

I sw and lw accept a symbol as argument, but not a constant

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 22 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)
I 8 first arguments in a0, ..., a7 and return value in a0
I no delay slot to hide
I access to cause, status and timer related registers using csrrw instructions
I only machine mode interrupt/exception/traps presented,

configuration without vectors⇒ everything done in software
I CLINT and PLIC make things more complex than MIPS to handle simple timer

interrupt

MIPS
UART

 IRQ[0]
IRQ[1]

IRQ[5]

+

CR

SR

h
ip

5

h
ip

1
h

ip
0

15 1011

bit

x
co

d
e

7 .. 2

Compare

Count+1

=

set
reset

RISC-V
UART

+

set
reset

CLINT
mtime

mtimecmp

≥
mip
11

7

PLIC
priority

pending1

enable1

threshold

claim

1

2

mie

mstatus

mideleg

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 23 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

Stack layouts
MIPS I r3000

high 5th parameter other ones above
addresses room for $a3 needed only if callee
↓ room for $a2 wants them back after
↓ room for $a1 calling an other function
↓ room for $a0 $sp in caller (f)
↓ $ra return address (g)
↓ registers to be
↓ saved
↓ local variables
↓ parameter n− 1 when calling
↓ · · · an other
↓ parameter 5 function (h)
↓ room for $a3
↓ room for $a2

low room for $a1 for the next call (h)
addresses room for $a0 $sp in callee (g)

RISC-V rv32i
high addresses f local variables sp in calller (f)

↓ ra return address
↓ other registers
↓ to save
↓ g local variables
↓ parameter n− 1 preparing call to
↓ ... next function h
↓ parameter 8 sp in callee (g)

low addresses ...

A bit easier to explain to students

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 24 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Introduction to asm programming (3rd year, ≈250 students)

Conclusion
Complexity is alike, but RISC-V rv32i has a few interesting features:
I (very) low integer instruction count
I integer calling conventions pretty simple for fixed number of parameters
I no delay slot
I an unusual pc-relative instruction auipc

Small demo
Small function example
QEMU demo

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 25 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Operating System Implementation (4th year, ≈75 students)

Objective of the class
I understand what happens when a computer is turned on
I understand virtual memory to physical memory translation
I learn to implement:

boot, kernel threads,
page tables, frame allocation (overlays⇒ no file system, no page faults)
user processes, queues, shared memory, ...

I do all that on RISC-V 64 using QEMU sifive_u board

What did we do (and still do) before?
I originally developed for x86-32
I hiding quite a few stu� under the carpet
I still in use: only 2 groups over 8 did it on RISC-V last year

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 26 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Operating System Implementation (4th year, ≈75 students)

What do we provide the students?
I skeleton of code, with set of (complex) Makefiles
I header files with helper functions

inline asm stu�, Linux priority queues, ...
I ≈ 15 userland tests stressing the implementation

What do we expect from the students?
I handle timer interrupts
I build all OS functions first in kernel mode

starting by process creation and context switch
I add (limited) support for virtual memory
I understand that there is one page table structure per process
I add system calls to wrap the kernel OS functions

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 27 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Operating System Implementation (4th year, ≈75 students)

What changes when using RISC-V
I move to 64-bit
I boot phase can be fully written by the students

no gory details of x86 legacy to skip over
avoid hardwired stu�s that are hardly explainable: idt, gdt, tss, ...
⇒ still need to configure the pmp areas

I simpler interruption mechanism and implementation of system calls
no implicit push of things on stack
⇒ interruption setup a bit complex: m[ei]deleg, shadow registers, ...

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 28 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Operating System Implementation (4th year, ≈75 students)
And page tables, somehow more complex on RISC-V

x86 page tables RISC-V SV39 page tables

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 29 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Operating System Implementation (4th year, ≈75 students)

Conclusion
x86-32 vs RISC-V 64 fight not over!

x86 students like x86 as they know its name
x86 page table structure
x86 see only kernel and user mode

RISC-V boot process from start address user mode
RISC-V no weird hw tables to update here and there
RISC-V no implicit stu� pushed on or popped from the stack

Overall di�erent, allowing to go a bit more in depth on hw related matters

Small demo
Context creation and context switch

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 30 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Computer architecture (4th year, ≈35 students)

Objective of the class
I detail how simple 3/4/5/6 stage pipeline processors work

bypasses, interlocks
I explain cache coherency and memory consistency issues and solutions

MSI, MESI protocols, plus atomic operation support

What did we do (and still do) before?
I CAAQA with 5-stage pipeline MIPS, like everyone does!

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 31 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Computer architecture (4th year, ≈35 students)

Main changes due to RISC-V in classical 5-stage pipeline
On branches
I target is pc + offset (was pc + 4 + offset)
I non-conditional branches have no delay slot
⇒ kill (at least) 1 following instruction

I conditional branches have no delay slot either,
have “complex” conditions and resolved late
⇒ kill 2 following instructions if branch taken

⇒ Quite expensive, ... or add a branch predictor

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 32 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Computer architecture (4th year, ≈35 students)

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 33 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Computer architecture (4th year, ≈35 students)

Conclusion
Simple 5-stage pipeline implementation of RISC-V is:
I less e�cient or harder

branch instructions will increase the CPI
or a branch predictor must be added

I a bit bigger, because pc must be propagated
I but the critical path should be shorter

Numerous atomic memory operations to present

No demo
Lucky you!

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 34 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

System level design in SystemC (5th year, ≈20 students)

Objective of the class
Class targeting an in-depth presentation of SystemC TLM concepts and modeling
I introduce the notion of virtual prototype
I show how to model and simulate a digital system in SystemC before its

actual implementation
I using "native" simulation, through dedicated hardware abstraction layer APIs
I using an instruction accurate simulator

I build the same system on a (cheap) FPGA board and run the same software
just use another implementation of the HAL

What did we do before?
I Originally developed around Xilinx’ microblaze

I SystemC model from the SoCLib library
I microblaze RTL model from Xilinx

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 35 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

System level design in SystemC (5th year, ≈20 students)

BUS

CPU ITC

BRAM GPIO

VGA TIMER

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 36 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

System level design in SystemC (5th year, ≈20 students)

Using RISC-V
Interest
I very parameterizable architecture
I compressed instructions

But needs
I simple SystemC compatible ISS
⇒ developed a SoCLib rv32imafc model (machine mode only)

I synthesizable core on Xilinx FPGAs
⇒ have (a very very slow) one from Basic Architecture class, good enough

Note that keeping in pace with Vivado hurts, ...

Small demo
Native and cross-compiled top level
System execution

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 37 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)

Objective of the class
Teaching the link between HW and SW in SoCs
I SW environment (assembly, linker, ISA simul., compil., debug)
I HW environment (SoC generation, emulation, . . .)
I exceptions, interrupts and traps
I multi-tasking, multi-processing and memory coherence
I development and integration of a custom peripheral with its HAL
I HW and SW mapping⇒ C application on FPGA

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 38 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)

Needs
I tunable, fast to simulate

HW/SW platform
I open source and

synthesizable HW/SW SoC
⇒ FPGA evaluation

I platform widely accepted
and well supported

⇒ Berkeley’s RISC-V based
Rocket Chip SoC generator

PeripheralsGPIO UART SPI ...

System bus: TileLink

CLINT

PLIC

Local
interrupts

Global
interrupts

Debug
interface

M
em

or
y

bu
s:

 A
X

I4

Main
memory

FPU: Floating-Point Unit

RoCC: Rocket Custom Coprocessor

PTW: Page Table Walker

TLB: Translation Lookaside Buffer CLINT: Core Local Interruptor
PLIC: Platform-Level Interrupt Controller

Rocket Tile

Rocket core

RV32 / RV64
IMAFDC TLBPTW

FPU RoCC

Cache L1
Données

Cache L1
Instructions

Rocket Tile

Rocket core

RV32 / RV64
IMAFDC TLBPTW

FPU RoCC

Data
L1 Cache

Instruction
L1 Cache

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 39 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)
Design Flow

SW components
source code
in C *.c *.h

SW components
source code in

Assembly *.s *.S

Spike

HW components
source code

in CHISEL *.scala

CHISEL
Compiler

RISCV-GCC Compiler

Verilog
RTL

 C Emulator

Test cases/bench
in C++

Verilator

Xilinx Vivado

 FPGA
 Implementation

Bitstream

 ASIC
 Implementation

HW components
source code

in Verilog *v *.vh

RISC-V Binary

Log / Results Waveforms

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 40 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)

Show impact of array placement in memory on L1 collision
L1 data-cache: 8 kB, 256 blocks, 32-byte each
x, y arrays of 4096 elements of 32-bit
address of x is 0x8101_0000, address of y is 0x8101_4000

loop: for (i = 0; i < 4096; i++)
s += x[i] + y[i];

No data reuse
Only line “prefetch” e�ect

I paper analysis of execution to evaluate dcache miss rate
I execution with spike to gather statistics
I propose a better placement of y to avoid collision

hint: make sure x and y never share a line

Small demo
Cache statistics with spike, with the bad choice and a good choice

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 41 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)

Real-time multi-tasking
Students
I analyze and complete assembly code

I memory tasks allocation, init stacks, ...
I save/restore contexts, switch tasks, scheduling, ...
I time allocation: give #ticks per task

I code two simple tasks in C, e.g. increment in turn a shared variable
I simulate and debug using Spike simulator: functional validation

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 42 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

HW/SW System Integration with RISC-V (5th year, ≈40 students)

Real-time multi-tasking
I simulate the HW using the cycle-accurate bit-accurate C++ Emulator

T1 = T2 = 100 ticks
Executing task

T2 T1

Timer interrupts

T1 = 100 ticks, T2 = 300 ticks
T2T1

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 43 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Outline

1 Preamble

2 Introduction

3 Overview of the curriculum

4 Class specifics

5 Take away

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 44 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Take away
Momentum around RISC-V brings in some freshness

Opportunity to renew classes
Not a revolution: basics are basics, but:
I benefit from the hype
I make student aware that x86-64 doesn’t rule them all
I escape complex CISC or complex RISC ISA

Benefit for teachers
I clean and orthogonal ISA (at least for rv32i)
I simple integer calling conventions
I stable cross-development tools, including simulators
I actual implementations on FPGA (even too many perhaps!) and ASIC

⇒ useful replacement to a mix of x86/MIPS/whatever all along the curriculum

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 45 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Take away

Fear
Are we taking a reckless risk(-v)?

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 46 / 47 >

Preamble Introduction Overview of the curriculum Class specifics Take away

Thanks

Students/Engineers/PhD that have
contributed to the classes
I Noureddine Ait-Said (IRT)
I Mathieu Barbe (TIMA)
I Amaury Butaux (TIMA)
I Marius Leblanc (TIMA)
I Loïc Jovanovic (TIMA)
I Robin Stieglitz (IDEX)
I Arthur Vianes (IDEX)
I Benoît Wallon (TIMA)

Sponsors

F. Pétrot, TIMA, Univ. Grenoble Alpes (TIMA Lab) 2nd RISC-V Meeting Tuesday October 1st, 2019 < 47 / 47 >

	Preamble
	Introduction
	Overview of the curriculum
	Class specifics
	Take away

