Fast and Accurate Vulnerability Analysis of
a RISC-V Processor

Joseph Paturel, Simon Rokicki, Olivier Sentieys

Univ. Rennes, Inria, IRISA

oy (&:1RISA

Why care about Fault Tolerance?

 Modern technologies

— Lower node capacitances

— Denser layouts - High SET sensitivity

— Increased frequencies

* Energy efficiency

— Lower supply and threshold voltages

Vulnerability Analysis

e Fault injection, simulation or emulation most often:
— Only injects single-bit faults
— Does not model the microarchitecture
— Ignores combinational logic

 Memory/register fault injection is not enough
— Need to model microarchitecture
— Need to consider combinational logic [1]

* New technologies exhibit multi-bit error behaviors
— Need to model MBUs as well as SEUs

[1] N. N. Mahatme et al, «Comparison of Combinational and Sequential Error Rates for a Deep
Submicron Process», IEEE Trans. On Nuclear Science, Dec. 2011 3

Contributions

« MBUs are present and are here to stay

e Fault injection methodology and flow (Part I1)
— From gate to microarchitecure
— MBU-aware
— Fast and accurate

e Use case: Comet RISC-V processor core (Part |)

Part I: Comet
a HLS designed RISC-V Core

What You Simulate is What You Synthesize

* Traditional Processor Design Flow

— Maintain two coherent models:

e RTL and simulation (ISS) models

HW Design
& Verification

RTL
Simulation

RTL Synthesis

Physical
Design

SW
Validation

Compiler

Compiled code

What You Synthesize is What You Simulate

HW Design C++ SW
& Verification Model Validation

Compiled

RTL Compiled 1S5 SW code

* Proposed Flow Y EoR

— Design the processor as well as its
software validation flow from a

single high-level model Physical
Design

RTL Synthesis

Explicitly Pipelined Simulator (1/2)

Comet core

— 32-bit RISC-V instruction set
RV32IM

— In-order 5-stage pipeline
micro-architecture

Pipelined stages are explicit
Main loop is pipelined (ll1=1)

Explicit stall mechanism
Explicit forwarding

struct FtoDC ftodc;

struct DCtoEx dctoex;
struct ExtoMem extomem:;
struct MemtoWB memtowb:;

whi

end

le true do
ftode_temp = fetch():
dctoex_temp = decode(ftodc);
extomem_temp = execute(dctoex);
memtowb_temp = memory(extomem);
writeback(memtowb); n);
bool forward = forwardLogic():
bool stall = stallLogic();
if /stall then
ftodc = ftodc_temp;
dctoex = dctoex_temp;
extomem = extomem_temp;
memtowb = memtowb_temp:
end
if forward then
| dctoex.valuel = extomem.result;
end

Explicitly Pipelined Simulator (2/2)

struct FtoDC ftodc:
struct DCtoEx dctoex:

RegFile struct ExtoMem extomem:;
\r Forward i<— struct MemtoWB memtowb;
223320 NV LS : & while true do
m ftodc_temp = fetch():
S
=)
S) 2
c S 9 < B
S M%< 1M S c memtowb_lemp = memory(extomem);
; L q) g - .
o o g writeback(memtowb);
E : bool forward = forwardLogic():
£ bool stall = stallLogic():
t A - N B if /stall then
i § ftode = ftodc_temp;
Branch Unit ¢ | ' -
: '| Cache : dctoex = dctoex_temp;
: : : : extomem = extomem_temp;
Fetch i i i Memory ; Write Back memtowb = memtowb_temp:
1 1 1 1 end
if forward then
| dctoex.valuel = extomem.result;
end

end 9

Design and Validation Flow

Simulation performance

4 e 26 Millions cycles per sec.

» Ccompiler | y|simuator| ¢ MiBench
« 8th-gen. Intel core i7

A
Xilinx —>» ASICFlow (3| Floor-
4 | Vivado HLS / plan
core.c Ly rilv
S Mentor a
Catapult HLS :
—» FPGAFlow |—»{Bitstream

What about quality of the hardware?

10

Synthesis Results

» Target technology is STMicro 28nm FDSOI Area
* All cores are configured for rv32i

AREA AND FREQUENCY RESULTS FOR DIFFERENT RISC-V CORES.

Core Language Frequency Area (um?)
Target (MHz)
Comet [1] C++ 8476
PicoRV32 [3] | Verilog 700 7830 W Fetch m Decode
Rocket [4] Chisel 11764 Execute B Memory

Writeback

(includes RF) 5

Advantages and Limitations

Advantages Limitations

* Improves readability, * Pipeline stages and some
productivity, maintainability, and features (e.g. multi-cycle
flexibility of the design operators) have to be explicit

 Fast simulation (~20.10° cycles/s) e HLS tools may have trouble

* Object-Oriented processor model synthesizing large multi-core
can be easily modified, expanded systems...

and verified

12

Part Il: Vulnerability Analysis
Flow

Proposed Approach to Vulnerability Analysis

.v/.vhdl

A
1

. HLS

] Gate-level
Analysis

Workload

=
-
-

-
-
=l =l o
-

C++ Compilation

Error
Patterns

uArch
Injection

Vulnerability
Metrics

14

. Gate-
1/ Gate-level Analysis m—» level — Error
Analysis Patterns

- : i ™
* Inject SETs in the Design Time | Gate-level ' | Technology
gate-level netlist netlist library
Error
oobabiity || Parameters: | " |
.......................... L/SET N " Reauition
* Duration 5= Fault injector
L ¥ T + Type
=i < * N_inj
e jE * N_sim
— |2 \Z] 2%
—1) @ c | . 7 | v 2
___ L iion E—— Catelovel Log :
Input generation . ,
Logging netlist |
L TestBench Run Time)

15

. Gate-
1/ Gate-level Analysis m—» level — Error
Analysis Patterns

* Logging patterns and error probability (SEUs + MBUs)

16

Results: Comet Execution Stage

Number of erroneous bits in output

I’eq |Ste]f Histogram of the number of erroneous register bits

100.00% 4

10.00%

1.00% 4

«—— SEUs 94.9%

MBUSs 5.1%

0.10% 4

Error size repartition (%)

0.01% 4

1 Million injections

10

20 30 40 50
Number of erroneous bits

o
=]
~

o
o
@

Observed error probability (%)
o
o
=

o
o
=

o
=)
o

Dest. Register,
Opcode Forwarding,
etc.

Output register per bit error

o
o
=)

o
o
w

o
o
N

nrralh a2
probabitity

ALU

’ outputs

20

i
I
80 1

|
|
i \

(M
40 60
Bit position in register

00

17

* Fixed width (400ps)

Influence of SET Width and Frequency on MBUs

Freq. | 200 MHz | 300 MHz | 400 MHz | 500 MHz | 600 MHz
SEU 9.308 15,592 23,613 26,489 30,919
)y 03% 06.3% 04. 1% 04 9% 05.5%

699 599 B 1429 1,447
MBU 1% 3.7% 5.9% 5.1% 4.5%

* Fixed frequency (500MHz)

SET 100 ps | 200 ps | 400 ps 500 ps

SEU 5,144 10,529 | 26,489 | 33,449

5 07.6% 05.3% 04 9% 05.9%

127 755 1429 1,432
MBU 2.4% 4.7% 5.1% 4.1%

18

2/ Microarchitectural-Level Fault Injection

* Augmented simulator allows for

injection of gate-level fault patterns Efror

Patterns

* Injection is guided by the area of Workload UArch
the different pipeline stages Injection

* Fault classes considered: Vull\l;lletrr’:}bility
etrics

— Crashes and Hangs

— ISM, AOM, ISM & AOM ISM: Internal State Mismatch

AOM: Application Output Mismatch 19

Comet Vulnerability Analysis Results

* Error class proportions
e Standard vs. proposed approach

1,6
1,4
1,2

0,8
06 W Standard
0,4 B Proposed
0,2

=

0
Masked Crash+ ISM+ Masked Crash+ ISM+ Masked Crash+ ISM+ Masked Crash+ ISM +
Hang AOM Hang AOM Hang AOM Hang AOM
matmul gsort blowfish average

20

Conclusion on Vulnerability Analysis

« MBUs are present and are here to stay

 MBUs significantly impact AVF

— more than 50% critical errors (crashes & hangs)

* Fault injection methodology and flow
— From gate to microarchitecure
— Conscious of MBU patterns and error probability
— Fast and accurate

21

Conclusion & Roadmap on Comet

 Efficient processor core design (HW parch + SW simulator)
from a single C++ code

* Current projects
— Dynamic Binary Translation, Non-Volatile Processor, Fault-Tolerant
Multicore, etc.
* Perspectives

— Automatic source-to-source transformations for HLS
* From ISS-like specification to HLS-optimized C code

— Support for floating point extension
— RTOS Support (process, interrupt controller, peripherals) \
— Multi-core system with cache coherency (Q4 2019)

— Many-core system with NOC (2020)
22

Questions

Thank you for your attention!

?

https://gitlab.inria.fr/srokicki/Comet
23

