
Joseph Paturel, Simon Rokicki, Olivier Sentieys

Univ. Rennes, Inria, IRISA



2

Why care about Fault Tolerance?

• Modern technologies

– Lower node capacitances

– Denser layouts

– Increased frequencies

• Energy efficiency

– Lower supply and threshold voltages

High SET sensitivity



3

Vulnerability Analysis

• Fault injection, simulation or emulation most often:
– Only injects single-bit faults

– Does not model the microarchitecture

– Ignores combinational logic

• Memory/register fault injection is not enough
– Need to model microarchitecture

– Need to consider combinational logic [1]

• New technologies exhibit multi-bit error behaviors
– Need to model MBUs as well as SEUs

[1] N. N. Mahatme et al, «Comparison of Combinational and Sequential Error Rates for a Deep

Submicron Process», IEEE Trans. On Nuclear Science, Dec. 2011



4

Contributions

• MBUs are present and are here to stay

• Fault injection methodology and flow (Part II)

– From gate to microarchitecure

– MBU-aware

– Fast and accurate

• Use case: Comet RISC-V processor core (Part I)



Part I: Comet
a HLS designed RISC-V Core



6

• Traditional Processor Design Flow

– Maintain two coherent models:

• RTL and simulation (ISS) models

ISS

RTL 
Simulation

RTL Synthesis

SW 
Validation

HW Design 
& Verification

Compiler

Physical 
Design

Compiled code

ARCHITECTURE



7

• Traditional Processor Design Flow

– Maintain two coherent models:

• RTL and simulation (ISS) models

• Proposed Flow

– Design the processor as well as its 
software validation flow from a 
single high-level model

ISS

SW 
Validation

HW Design 
& Verification

Compiler

RTL 
Simulation

RTL Synthesis

Physical 
Design

ARCHITECTURE

HLS

C++
Model

Compiled 
SW codeCompiled ISS



8

Explicitly Pipelined Simulator (1/2)

• Comet core
– 32-bit RISC-V instruction set 

RV32IM

– In-order 5-stage pipeline
micro-architecture

• Pipelined stages are explicit

• Main loop is pipelined (II=1)

• Explicit stall mechanism

• Explicit forwarding



9

Explicitly Pipelined Simulator (2/2)

RegFile

In
st

ru
ct

io
n

 C
ac

h
e

Branch Unit

Fe
tc

h

D
ec

o
d

e A
LU

Data
Cache

M
em

Fetch Decode Execute Memory Write Back

Forward



10

Design and Validation Flow

core.c

C compiler

Xilinx 
Vivado HLS

Mentor 
Catapult HLS

Simulator

rtl.v

FPGA Flow

ASIC Flow

Bitstream

Floor-
plan

Simulation performance
• 26 Millions cycles per sec. 
• MiBench
• 8th-gen. Intel core i7

What about quality of the hardware?



11

Synthesis Results

• Target technology is STMicro 28nm FDSOI

• All cores are configured for rv32i
6%

11%

36%

5%

42%

Area

Fetch Decode

Execute Memory

Writeback
(includes RF)



12

Advantages and Limitations

Advantages

• Improves readability, 
productivity, maintainability, and 
flexibility of the design 

• Fast simulation (~20.106 cycles/s)

• Object-Oriented processor model 
can be easily modified, expanded 
and verified 

12

Limitations

• Pipeline stages and some 
features (e.g. multi-cycle 
operators) have to be explicit 

• HLS tools may have trouble 
synthesizing large multi-core 
systems…



Part II: Vulnerability Analysis
Flow



14

Proposed Approach to Vulnerability Analysis

.v/.vhdl Gate-level

Analysis
Error

Patterns

uArch

Injection
Workload

Vulnerability

Metrics

C++ Model

HLS

C++ Compilation



15

Error

probability

Bit position

1/ Gate-level Analysis

• Inject SETs in the 
gate-level netlist

Gate-level 
netlist

Technology
library

Fault injector

Parameters:
• Resolution
• Duration
• Type
• N_inj
• N_sim

Error insertions
Input generation
Logging

Log

TestBench

Gate-level 
netlist

.v/.vhdl
Gate-

level

Analysis

Error

Patterns



16

1/ Gate-level Analysis

• Logging patterns and error probability (SEUs + MBUs)

:

:

:

:

.v/.vhdl
Gate-

level

Analysis

Error

Patterns



17

Results: Comet Execution Stage

MBUs 5.1%

SEUs 94.9%

Number of erroneous bits in output 

register

ALU 

outputs

Dest. Register, 

Opcode Forwarding, 

etc.

Output register per bit error

probability

1 Million injections



18

Influence of SET Width and Frequency on MBUs

• Fixed width (400ps)

• Fixed frequency (500MHz)



19

2/ Microarchitectural-Level Fault Injection 

• Augmented simulator allows for 
injection of gate-level fault patterns

• Injection is guided by the area of 
the different pipeline stages

• Fault classes considered:

– Crashes and Hangs

– ISM, AOM, ISM & AOM ISM: Internal State Mismatch
AOM: Application Output Mismatch

Error

Patterns

uArch

Injection
Workload

Vulnerability

Metrics



20

Comet Vulnerability Analysis Results

• Error class proportions

• Standard vs. proposed approach

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

Masked Crash +
Hang

ISM +
AOM

Masked Crash +
Hang

ISM +
AOM

Masked Crash +
Hang

ISM +
AOM

Masked Crash +
Hang

ISM +
AOM

matmul qsort blowfish average

Standard

Proposed



21

Conclusion on Vulnerability Analysis

• MBUs are present and are here to stay

• MBUs significantly impact AVF

– more than 50% critical errors (crashes & hangs)

• Fault injection methodology and flow

– From gate to microarchitecure

– Conscious of MBU patterns and error probability 

– Fast and accurate



22

Conclusion & Roadmap on Comet

• Efficient processor core design (HW µarch + SW simulator) 
from a single C++ code

• Current projects
– Dynamic Binary Translation, Non-Volatile Processor, Fault-Tolerant

Multicore, etc.

• Perspectives
– Automatic source-to-source transformations for HLS

• From ISS-like specification to HLS-optimized C code

– Support for floating point extension

– RTOS Support (process, interrupt controller, peripherals)

– Multi-core system with cache coherency (Q4 2019)

– Many-core system with NOC (2020)



23

Questions

https://gitlab.inria.fr/srokicki/Comet

Thank you for your attention!

?


