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Why care about Fault Tolerance?

• Modern technologies

– Lower node capacitances

– Denser layouts

– Increased frequencies

• Energy efficiency

– Lower supply and threshold voltages

High SET sensitivity
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Vulnerability Analysis

• Fault injection, simulation or emulation most often:
– Only injects single-bit faults

– Does not model the microarchitecture

– Ignores combinational logic

• Memory/register fault injection is not enough
– Need to model microarchitecture

– Need to consider combinational logic [1]

• New technologies exhibit multi-bit error behaviors
– Need to model MBUs as well as SEUs

[1] N. N. Mahatme et al, «Comparison of Combinational and Sequential Error Rates for a Deep

Submicron Process», IEEE Trans. On Nuclear Science, Dec. 2011
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Contributions

• MBUs are present and are here to stay

• Fault injection methodology and flow (Part II)

– From gate to microarchitecure

– MBU-aware

– Fast and accurate

• Use case: Comet RISC-V processor core (Part I)



Part I: Comet
a HLS designed RISC-V Core
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• Traditional Processor Design Flow

– Maintain two coherent models:

• RTL and simulation (ISS) models
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• Traditional Processor Design Flow

– Maintain two coherent models:

• RTL and simulation (ISS) models

• Proposed Flow

– Design the processor as well as its 
software validation flow from a 
single high-level model
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Explicitly Pipelined Simulator (1/2)

• Comet core
– 32-bit RISC-V instruction set 

RV32IM

– In-order 5-stage pipeline
micro-architecture

• Pipelined stages are explicit

• Main loop is pipelined (II=1)

• Explicit stall mechanism

• Explicit forwarding
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Explicitly Pipelined Simulator (2/2)
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Design and Validation Flow

core.c

C compiler
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Simulation performance
• 26 Millions cycles per sec. 
• MiBench
• 8th-gen. Intel core i7

What about quality of the hardware?
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Synthesis Results

• Target technology is STMicro 28nm FDSOI

• All cores are configured for rv32i
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Advantages and Limitations

Advantages

• Improves readability, 
productivity, maintainability, and 
flexibility of the design 

• Fast simulation (~20.106 cycles/s)

• Object-Oriented processor model 
can be easily modified, expanded 
and verified 
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Limitations

• Pipeline stages and some 
features (e.g. multi-cycle 
operators) have to be explicit 

• HLS tools may have trouble 
synthesizing large multi-core 
systems…



Part II: Vulnerability Analysis
Flow
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Proposed Approach to Vulnerability Analysis
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Error

probability

Bit position

1/ Gate-level Analysis

• Inject SETs in the 
gate-level netlist
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1/ Gate-level Analysis

• Logging patterns and error probability (SEUs + MBUs)
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Results: Comet Execution Stage

MBUs 5.1%

SEUs 94.9%

Number of erroneous bits in output 
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Influence of SET Width and Frequency on MBUs

• Fixed width (400ps)

• Fixed frequency (500MHz)
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2/ Microarchitectural-Level Fault Injection 

• Augmented simulator allows for 
injection of gate-level fault patterns

• Injection is guided by the area of 
the different pipeline stages

• Fault classes considered:

– Crashes and Hangs

– ISM, AOM, ISM & AOM ISM: Internal State Mismatch
AOM: Application Output Mismatch
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Comet Vulnerability Analysis Results

• Error class proportions

• Standard vs. proposed approach
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Conclusion on Vulnerability Analysis

• MBUs are present and are here to stay

• MBUs significantly impact AVF

– more than 50% critical errors (crashes & hangs)

• Fault injection methodology and flow

– From gate to microarchitecure

– Conscious of MBU patterns and error probability 

– Fast and accurate
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Conclusion & Roadmap on Comet

• Efficient processor core design (HW µarch + SW simulator) 
from a single C++ code

• Current projects
– Dynamic Binary Translation, Non-Volatile Processor, Fault-Tolerant

Multicore, etc.

• Perspectives
– Automatic source-to-source transformations for HLS

• From ISS-like specification to HLS-optimized C code

– Support for floating point extension

– RTOS Support (process, interrupt controller, peripherals)

– Multi-core system with cache coherency (Q4 2019)

– Many-core system with NOC (2020)



23

Questions

https://gitlab.inria.fr/srokicki/Comet

Thank you for your attention!

?


