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It is the Instruction Fetch front-end  

Stupid !!

André Seznec
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Single thread performance 

• Has been driving architecture till early 2000’s

 And that was fun !!

 Pipeline 

 Caches

 Branch prediction

 Superscalar execution

 Out-of-order execution



3Winter came on the architecture 

kingdom

• Beginning 2003:

 The terrible “multicore era”

 The tragic GPGPU  era

 The Deep learning architecture

 The quantum architecture 

The world was full of darkness
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In those terrible days

• Parallelism zealots were everywhere.

• Even industry had  abandoned the “Single 

Thread Architecture” believers

• Among those few:

 A group at INRIA/IRISA
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But “Amdahl’s Law is Forever”

• The universal parallel program did not appear

• Manycores are throughput oriented;

 The user wants short response time

Could it be that the old religion (single thread 

architecture) was not completely dead ?
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And spring might come back

• Everyone is realizing that single thread 

performance  is the key.

• Companies are looking for microarchitects:

 Intel, Amd, ARM, Apple, Microsoft, NVIDIA, 

Huawei, Ampere Computing, ..

• But a nightmare for publications:

 One microarchitecture session at Micro 2019
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So  we definitely need

A very wide-issue 

aggressively speculative 

supercalar core
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Ultra High Performance Core (1)

• Very wide issue superscalar core

 >= 8-wide

 Out-of-order execution

 300-500 instruction window

 How to select instructions ?

 Managing dependencies ?

 Multicycle register file access ?
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Ultra High Performance Core (2)

• Main memory latency:

 200-500 cycles

• Cache hierarchy:

 L3-L4: shared, 30-40 cycles

 L2: 512K-1M, 10-15 cycles

 L1: I$ and D$ 32K-64K, 2-4 cycles

 Organisation ?

 Prefetch ?

 Compressed ?
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Ultra High Performance Core (3)

• 8-instructions per cycle ??:

 with 500 inst. window ?

 with  10-15 % branches ?

 with Mbytes  I-footprint ?

 Fetch/decode/rename 8 inst./cycle ?

 Predict branches/memory dependencies ?

 Predict values ?
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A block in the instruction front-end

Prediction

I-fetch
Decode

Dependencies

+renaming

IAG IF DC D+R DISP

Dispatch

+ memory dependency prediction

+ move elimination

+ value prediction (?)
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Instruction address generation

• One block per cycle

• Speculative: accuracy is critical

• Accuracy comes with hardware complexity:

 Conditional branch predictor

 Sequential block address computation

 Return address stack read

 Jump prediction

 Branch target prediction/computation

 Final address selection

In practice, not 

sufficient

4 MPKI/ 500 inst window:

75 % wrong pathes

Will not fit  in a single cycle
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Hierarchical IAG (example)

• Fast IAG + Complex IAG

• Conventional IAG spans over four cycles:

 3 cycles for conditional branch prediction

 3 cycles for I-cache read and branch target
computation

 Jump prediction , return stack read

 + 1 cycle for final address selection

• Fast IAG: Line prediction: 

 a single 2Kentry  table + 1-bit direction table

 select between fallthrough and line predictor read
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Hierarchical IAG (2)

LP

RAS

Pred Check

Cond.

Jump Pred

F
in

a
l S

e
le

c
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n

Branch target addresses

+ decode info

10 % misp. on Line Predictor

=

- 30 % instruction bandwidth
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So ?

• You should fetch as much as possible:

 Contiguous blocks

 Across contiguous cache blocks !

 Bypassing  not-taken branches !

 More than one block par cycle ?
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Example: Alpha EV8 (1999)

• Fetches up to two, 8-instruction blocks per cycle

from the I-cache:

 a block ends either on an aligned 8-

instruction end or on a taken control flow

 up to 16 conditional branches fetched and 

predicted per cycle

• Next two block addresses must be predicted in 

a single cycle
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A block in the instruction front-end

IF DC D+R DISP

IAG Slow  IAG
Slow and fast IAG 

diverges
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If you overfetch ..

• Add buffers;

IF DC D+R DISP

IAG Slow  IAG

….
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Decode is not an issue

• If you are using a RISC ISA !!

• Just a nightmare on x86 !!



20Dependencies marking and 

register renaming

• Just need to rename 8 (or more) inst per cycle:

 Check/mark dependencies within the group

 Read old map table

 Get up to 8 free registers

 Update the map table

The good news: 

It can be pipelined
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1:Op R6, R7 -> R5

2:Op R2, R5 -> R6

3:Op R6, R3 -> R4

4:Op R4, R6 -> R2

1:Op L6, L7 -> res1

2:Op L2, res1 -> res2

3:Op res2, L3 -> res3

4:Op res3,res2 -> res4

4 new free registers

+

Old map table

1:Op P6, P7 -> RES1

2:Op P2, RES1 -> RES2

3:Op RES2, L3 -> RES3

4:Op RES3,RES2 -> RES4

New map table 

Dependencies marking and 

register renaming (2)
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OK, where are we ?

• Very long pipeline:

 ≈ 15-20 cycles before execution stage

 Misprediction is a disaster

• Very wide-issue

 Need to fetch/decode/rename ≧ 8 inst/cycles

 mis(Fast prediction) is an issue

 Misses on I-caches/BTB also a problem
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Why branch prediction ?

• 10-30 % instructions are branches

• Fetch more than 8 instructions per cycle

• Direction and target known after cycle 20

 Not possible to lose those cycles on each branch

 PREDICT BRANCHES 

 and verify later !!
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global branch history
Yeh and Patt 91, Pan, So, Rameh 92

B1: if cond1

B2: if cond2 

B3: if cond1 and cond2

B1 and B2  outputs determine   B3 output

Global history: 

vector of bits (T/NT) representing the past branches

Table indexed by PC +  global history



25Exploiting local history

Yeh and Patt 91

25

for (i=0; i<100; i++)

for (j=0;j<4;j++) 

loop body

Look at the 3 last occurrences:

If all   loop backs then   loop exit 

otherwise:                     loop back

•A local history per branch

•Table of counters indexed with PC + local history



26Speculative history must be managed 

!?

• Local history:

 table of histories  (unspeculatively updated)

 must maintain a speculative history per inflight 

branch:

 Associative search, etc ?!?

• Global history:

 Append a bit on a single history register

 Use of a circular buffer and just a pointer to 

speculatively manage the history
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Hot research topic in the late 90’s

• McFarling 1993: 

 Gshare (hashing PC and history) +Hybrid predictors

• « Dealiased » predictors: reducing table conflicts impact

 Bimode, e-gskew, Agree 1997

Essentially relied on 2-bit counters



28EV8 predictor (1999):

(derived from) 2bc-gskew

e-gskew

Michaud et al 97

Learnt that:

- Very long path correlation exists

- They can be captured
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In the new world
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A UFO :  The perceptron predictor

Jiménez and Lin 2001

∑

Sign=prediction

X

signed 8-bit

Integer weights
branch history

as (-1,+1)

Update on mispredictions or if |SUM| <  
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(Initial) perceptron predictor

• Competitive accuracy

• High hardware complexity and latency

• Often better than classical predictors

• Intellectually challenging
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Rapidly evolved to

+
Can combine predictions:

-global path/branch history

-local history

-multiple history lengths

- ..

4 out of 5 CBP-1 (2004) 

finalists based on 

perceptron, 



33

An answer

• The geometric length predictors: 

 GEHL and TAGE



34The basis : A Multiple length global 

history predictor 

L(0)
?

L(4)

L(3)

L(2)

L(1)

T0

T1

T2

T3

T4

With a limited number of tables
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Underlying idea

• H and H’  two  history vectors equal on N bits, 

but differ on bit N+1

 e.g. L(1)NL(2)

• Branches (A,H) and (A,H’) 

biased in opposite directions

Table T2 should allow to discriminate

between (A,H) and (A,H’)
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GEometric History Length predictor

  

L(i) = ai-1L(1)

0 L(0) =

The set of history lengths forms a geometric series

{0, 2, 4, 8, 16, 32, 64, 128}

What is important: L(i)-L(i-1) is drastically increasing        

Spends most of the storage for short history !!
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L(0)
∑

L(4)

L(3)

L(2)

L(1)

TO

T1

T2

T3

T4

Prediction=Sign

GEHL (2004) 

prediction  through an adder tree

Using the perceptron idea with geometric histories



38TAGE (2006)

prediction  through partial match

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction 

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base 

predictor



39The Geometric History Length 

Predictors

• Tree adder:

 O-GEHL: Optimized GEometric History Length 

predictor

 CBP-1, 2004, best practice award

• Partial match:

 TAGE: TAgged GEometric history length predictor

+ geometric length

+ optimized update policy

 Basis  of the CBP-2,-3,-4,-5  winners

• Inspiration for many (most) current effective designs
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A BP research summary (CBP1 traces)

 2bit counters 1981: 8.55 misp/KI

 Gshare 1993:  5.30 misp/KI

 EV8-like  2002 (1999):  3.80 misp/KI  

 CBP-1 2004:         2.82 misp/KI

 TAGE  2006:         2.58 misp/KI    

 TAGE-SC  2016:  2.36 misp/KI 

Hot topic,   heroic efforts:

win 28 %,

No real work before 1991:

win 37 % 

The perceptron era,  a few actors:

win 25 %

A hobby for AS and DJ :

win 10%,  

TAGE introduction:

win 10%,  
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And indirect jumps ?

TAGE principles  to indirect jumps:

“A case for (partially) tagged branch 

predictors”, JILP Feb. 2006

The 3 first ranked predictors at 3rd CBP in 

2011 were ITTAGE predictors
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Memory (in)dependencies predictors

To allow load and stores to execute out-of-order

 Naive: dependent/independent

 Wait: e.g. Store sets

 Store forwarding: bypass the cache

 Register producer to consumer forwarding
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A speculation opportunity on RISC ISA

IF, DC, Rename, Dispatch Execution Commit

In order Out of order In order

Predict 

an event 

Verify the 

event  

Correct on 

misprediction

Predictor

update 

A branch is not load,  a load is not  an

indirect branch,  an indirect branch is

not  a conditional branch,  and at 

prediction time we do not even know 

the  instruction type ..
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The  Omnipredictor (PACT 2018)

Consolidating several types of speculation in a single

predictor structure : TAGE.

Memory dependency prediction and indirect target

prediction through TAGE and the BTB at zero storage

overhead.

Omnipredictor: a good fit for mid-range cores with

constrained hardware budget



45

Value Prediction ?

• Also in the front-end ..

 Predictions should be done in the front-end

 Control-flow  could be used to predict

 Values

 Value equality

 Register equality
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Issues in Front-End

• High instruction footprint applications (servers, 

cloud, web browsers, ..)

 Instruction cache misses

 BTB misses
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Summary

• Single thread performance was, is and will be a 

major issue:

 Industry is eager to deliver, but limited progress

• More « a la grand papa » microarchitects needed
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A few relevant publications

• A. Seznec, S. Felix, V. Krishnan, Y. Sazeides , “Design trade-offs on the 

EV8 branch predictor“, ISCA 2002

• A. Seznec, P. Michaud, “ A case for (partially) tagged Geometric 

History Length Branch Prediction”, JILP, Feb. 2006,

• A. Perais ,A. Seznec. Practical Data Value Speculation for Future High-

end Processors. HPCA 2014

• A. Perais, F.A. Endo, A.Seznec. Register Sharing for Equality Prediction. 

Micro 2016,

• A. Perais, A. Seznec, Cost Effective Speculation with the Omnipredictor

PACT ’18 

ftp://ftp.irisa.fr/local/caps/EV8BP.ps
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://people.irisa.fr/Arthur.Perais/data/HPCA%2714_Practical_VP.pdf
https://hal.inria.fr/hal-01888884

