It IS the Instruction Fetch front-end

Stupid !

André Seznec

I“W—

Single thread performance

« Has been driving architecture till early 2000’s

= And that was fun !!
= Pipeline
= Caches
= Branch prediction
= Superscalar execution
= QOut-of-order execution

I‘w’“f—

Winter came on the architecture ;
kingdom

* Beginning 2003:

The terrible “multicore era”

= The tragic GPGPU era
The Deep learning architecture
T

ne guantum architecture

In those terrible days

- Parallelism zealots were everywhere.

- Even industry had abandoned the “Single
Thread Architecture” believers

 Among those few:

= A group at INRIA/IRISA

But “Amdahl’'s Law is Forever”

* The universal parallel program did not appear

« Manycores are throughput oriented,
= The user wants short response time

Could it be that the old religion (single thread
architecture) was not completely dead ?

And spring might come back

- Everyone is realizing that single thread
performance is the key.

« Companies are looking for microarchitects:

= Intel, Amd, ARM, Apple, Microsoft, NVIDIA,
Huaweil, Ampere Computing, ..

» But a nightmare for publications:
= One microarchitecture session at Micro 2019

I"'m*'f—

So we definitely need

Ultra High Performance Core (1)

* Very wide issue superscal

encles ?

gister file access ?

Ultra High Performance Core (2)

« Main memory latency:
= 200-500 cycles

10

Ultra High Performance C

« 8-Instructions per cycl
= with 500 inst

Inst./cycle ?
memory dependencies ?

11

A block In the instruction front-end

Prediction

-fetch
I-fetc Decode

Dependencies

+renaming Dispatch

IAG DC D+R DISP

+ memory dependency prediction
+ move elimination

+ value prediction (?)
I&Izu’a/-

12

Instruction address generation

Speculative: accuracy is critical

AcCcur . :
4 MPKI/ 500 inst window:

/5 % wrong pathes
Return address stack read

IQW—

13

Hierarchical IAG (example)

 Fast IAG + Complex IAG
« Conventional IAG spans over four cycles:

3 cycles for conditional branch prediction

3 cycles for I-cache read and branch target

computation
Jump prediction , return stack read
+ 1 cycle for final address selection

« Fast IAG: Line prediction:
a single 2Kentry table + 1-bit direction table
select between fallthrough and line predictor read

14

Hierarchical IAG (2)

Branch target addresses
+ decode info

15

So ?

* You should fetch as much as possible:
= Contiguous blocks
= Across contiguous cache blocks !
= Bypassing not-taken branches !

= More than one block par cycle ?

16

Example: Alpha EV8 (1999)

« Fetches up to two, 8-instruction blocks per cycle
from the I-cache:

= a block ends either on an aligned 8-
Instruction end or on a taken control flow

= up to 16 conditional branches fetched and
predicted per cycle

* Next two block addresses must be predicted in
a single cycle

IQW—

17

A block In the instruction front-end

DISP

Slow and fast IAG
‘ diverges

I“W—

IAG Slow IAG

18

If you overfetch ..

 Add buffers:

...l DC

IAG Slow IAG

19

Decode Is not an iIssue

* |f you are using a RISC ISA !

« Just a nightmare on x86 !!

I“W—

Dependencies marking and 2
register renaming

« Just need to rename 8 (or more) inst per cycle:
= Check/mark dependencies within the group
= Read old map table
= Getup to 8 free reqisters
= Update the map table

21

Dependencies marking and
register renaming (2)

22

OK, where are we ?

* Very long pipeline:
= = 15-20 cycles before execution stage
= Misprediction Is a disaster

* Very wide-issue
= Need to fetch/decode/rename = 8 inst/cycles
= mis(Fast prediction) is an issue
= Misses on |-caches/BTB also a problem

23

Why branch prediction ?

« 10-30 % instructions are branches
« Fetch more than 8 instructions per cycle

« Direction and target known after cycle 20

= Not possible to lose those cycles on each branch
= PREDICT BRANCHES

= and verify later !!

24

global branch history
Yeh and Patt 91, Pan, So, Rameh 92

B1l: if condl
B2: if cond2
B3: if condl and cond?2

Bl and B2 outputs determine B3 output

Exploiting local history 25
Yeh and Patt 91

Look at the 3 last occurrences: for (i=0; i<100; i++)

If all loop backs then loop exit —— for (j=0;j<4;j++)

otherwise: loop back loop body

*A local history per branch

*Table of counters indexed with PC + local history

Speculative history must be managed =
1?2

« Local history:
= table of histories (unspeculatively updated)

= must maintain a speculative history per inflight
branch:

= Associative search, etc ?!1?

Branch preadiction: 21
Hot research topic in the late 90’ s

* McFarling 1993:
= Gshare (hashing PC and history) +Hybrid predictors

« Dealiased » predictors: reducing table conflicts impact

= Bimode, e-gskew, Agree 1997

Essentially relied on 2-bit counters

I‘w&f—

EV8 predictor (1999):
(derived from) 2bc-gskew

bimodal predicl:ilm

=

.,‘

metaprediction

28

PREDICTION
—*

In the new world

I‘?&W—

30

A UFO : The perceptron predictor
Jiménez and Lin 2001

signed 8-Dit branch history
Integer weights
Jer el as (-1,+1)
X -

Sign=prediction

Update on mispredictions or if |[SUM| < 6

—

31

(Initial) perceptron predictor

Competitive accuracy
High hardware complexity and latency

Often better than classical predictors

Intellectually challenging

32

Rapidly evolved to

5 ,

4 out of 5 CBP-1 (2004)
finalists based on
perceptron,

Can combine predictions:
-global path/branch history
-local history

-multiple history lengths

33

An answer

 The geometric length predictors:

= GEHL and TAGE

The basis : A Multiple length global 5
history predictor

i l&

T

L(0)
L(1)
L(2) T4
L(3)

L(4)

With a limited number of tables

I‘tw—

35

Underlying idea

- HandH' two history vectors equal on N bits,
but differ on bit N+1

= e.g. L(1)<N<L(2)
« Branches (A,H) and (A,H’)
biased In opposite directions

I‘W’—

36

GEometric History Length predictor
The set of history lengths forms a geometric series

[(0)=0

L) =a' ")

What is important: L(i)-L(i-1) is drastically increasing

Spends most of the storage for short history !!

I”'m’—

GEHL (2004) o
prediction through an adder tree

i O_x

L) L . .
L(1)
L(2) T4
L(3
©) Prediction=Sign

L(4)

Using the perceptron idea with geometric histories

I”'m’—

TAGE (2000) s
prediction through partial match

D PG h[O:L1] p¢ h[O:L2] pc h[O:L3]
y TS

- -
e e
1 1

ctri tag iul| [ctri tag iu[| [ctri tag (u

A . .
L //1 //1 //l //1 //1 //1
1 % A\ 4
1 % \ 4

1 \ /4

agless base
redictor prediction

o e

The Geometric History Length .
Predictors

« Tree adder:

* O-GEHL: Optimized GEometric History Length
predictor

= CBP-1, 2004, best practice award

« Partial match:
» TAGE: TAgged GEometric history length predictor
+ geometric length
+ optimized update policy
= Basis of the CBP-2,-3,-4,-5 winners

« Inspiration for many (most) current effective designs

I‘m’—

40

A BP research summary (CBP1 traces)

.&'z

2bit counters 1981: 8.55 misp/KI

Gshare 1993: 5.30 misp/KI

< Hot topic, heroic efforts: >
win 28 %,

EV8-like 2002 (1999): 3.80 misp/KI

CBP-1 2004: 2.82 misp/KI

TAGE 2006: 2.58 misp/KI

TAGE-SC 2016: 2.36 misp/Kl

rd

UA—

41

And indirect jJumps ?

TAGE principles to indirect jumps:

“A case for (partially) tagged branch
predictors”, JILP Feb. 2006

I@W—

42

Memory (in)dependencies predictors

To allow load and stores to execute out-of-order

= Naive: dependent/independent

= Wait: e.g. Store sets

= Store forwarding: bypass the cache

= Register producer to consumer forwarding

IQW—

43

A speculation opportunity on RISC ISA

In order Out of order In order

Correct on
misprediction

—

The Omnipredictor (PACT 2018)

=»Consolidating several types of speculation in a single
predictor structure : TAGE.

*Memory dependency prediction and Iindirect target
prediction through TAGE and the BTB at zero storage
overhead.

*Omnipredictor: a good fit for mid-range cores with
constrained hardware budget

44

45

Value Prediction ?

« Also In the front-end ..

= Predictions should be done in the front-end
= Control-flow could be used to predict

= Values

= Value equality

= Register equality

I‘w&f—

46

Issues In Front-End

- High instruction footprint applications (servers,
cloud, web browsers, ..)

= |nstruction cache misses

= BTB misses

47

Summary

« Single thread performance was, is and will be a
major Issue:

= |ndustry is eager to deliver, but limited progress

« More « a la grand papa » microarchitects needed

48

A few relevant publications

A. Seznec, S. Felix, V. Krishnan, Y. Sazeides , “
“, ISCA 2002

A. Seznec, P. Michaud,
. JILP, Feb. 2006,

A. Perais ,A. Seznec.
. HPCA 2014

A. Perais, F.A. Endo, A.Seznec. Register Sharing for Equality Prediction.
Micro 2016,

A. Perais, A. Seznec,
PACT 18

ftp://ftp.irisa.fr/local/caps/EV8BP.ps
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://people.irisa.fr/Arthur.Perais/data/HPCA%2714_Practical_VP.pdf
https://hal.inria.fr/hal-01888884

