
1

It is the Instruction Fetch front-end

Stupid !!

André Seznec

2

Single thread performance

• Has been driving architecture till early 2000’s

 And that was fun !!

 Pipeline

 Caches

 Branch prediction

 Superscalar execution

 Out-of-order execution

3Winter came on the architecture

kingdom

• Beginning 2003:

 The terrible “multicore era”

 The tragic GPGPU era

 The Deep learning architecture

 The quantum architecture

The world was full of darkness

4

In those terrible days

• Parallelism zealots were everywhere.

• Even industry had abandoned the “Single

Thread Architecture” believers

• Among those few:

 A group at INRIA/IRISA

5

But “Amdahl’s Law is Forever”

• The universal parallel program did not appear

• Manycores are throughput oriented;

 The user wants short response time

Could it be that the old religion (single thread

architecture) was not completely dead ?

6

And spring might come back

• Everyone is realizing that single thread

performance is the key.

• Companies are looking for microarchitects:

 Intel, Amd, ARM, Apple, Microsoft, NVIDIA,

Huawei, Ampere Computing, ..

• But a nightmare for publications:

 One microarchitecture session at Micro 2019

7

So we definitely need

A very wide-issue

aggressively speculative

supercalar core

8

Ultra High Performance Core (1)

• Very wide issue superscalar core

 >= 8-wide

 Out-of-order execution

 300-500 instruction window

 How to select instructions ?

 Managing dependencies ?

 Multicycle register file access ?

9

Ultra High Performance Core (2)

• Main memory latency:

 200-500 cycles

• Cache hierarchy:

 L3-L4: shared, 30-40 cycles

 L2: 512K-1M, 10-15 cycles

 L1: I$ and D$ 32K-64K, 2-4 cycles

 Organisation ?

 Prefetch ?

 Compressed ?

10

Ultra High Performance Core (3)

• 8-instructions per cycle ??:

 with 500 inst. window ?

 with 10-15 % branches ?

 with Mbytes I-footprint ?

 Fetch/decode/rename 8 inst./cycle ?

 Predict branches/memory dependencies ?

 Predict values ?

11

A block in the instruction front-end

Prediction

I-fetch
Decode

Dependencies

+renaming

IAG IF DC D+R DISP

Dispatch

+ memory dependency prediction

+ move elimination

+ value prediction (?)

12

Instruction address generation

• One block per cycle

• Speculative: accuracy is critical

• Accuracy comes with hardware complexity:

 Conditional branch predictor

 Sequential block address computation

 Return address stack read

 Jump prediction

 Branch target prediction/computation

 Final address selection

In practice, not

sufficient

4 MPKI/ 500 inst window:

75 % wrong pathes

Will not fit in a single cycle

13

Hierarchical IAG (example)

• Fast IAG + Complex IAG

• Conventional IAG spans over four cycles:

 3 cycles for conditional branch prediction

 3 cycles for I-cache read and branch target
computation

 Jump prediction , return stack read

 + 1 cycle for final address selection

• Fast IAG: Line prediction:

 a single 2Kentry table + 1-bit direction table

 select between fallthrough and line predictor read

14

Hierarchical IAG (2)

LP

RAS

Pred Check

Cond.

Jump Pred

F
in

a
l S

e
le

c
tio

n

Branch target addresses

+ decode info

10 % misp. on Line Predictor

=

- 30 % instruction bandwidth

15

So ?

• You should fetch as much as possible:

 Contiguous blocks

 Across contiguous cache blocks !

 Bypassing not-taken branches !

 More than one block par cycle ?

16

Example: Alpha EV8 (1999)

• Fetches up to two, 8-instruction blocks per cycle

from the I-cache:

 a block ends either on an aligned 8-

instruction end or on a taken control flow

 up to 16 conditional branches fetched and

predicted per cycle

• Next two block addresses must be predicted in

a single cycle

17

A block in the instruction front-end

IF DC D+R DISP

IAG Slow IAG
Slow and fast IAG

diverges

18

If you overfetch ..

• Add buffers;

IF DC D+R DISP

IAG Slow IAG

….

19

Decode is not an issue

• If you are using a RISC ISA !!

• Just a nightmare on x86 !!

20Dependencies marking and

register renaming

• Just need to rename 8 (or more) inst per cycle:

 Check/mark dependencies within the group

 Read old map table

 Get up to 8 free registers

 Update the map table

The good news:

It can be pipelined

21

1:Op R6, R7 -> R5

2:Op R2, R5 -> R6

3:Op R6, R3 -> R4

4:Op R4, R6 -> R2

1:Op L6, L7 -> res1

2:Op L2, res1 -> res2

3:Op res2, L3 -> res3

4:Op res3,res2 -> res4

4 new free registers

+

Old map table

1:Op P6, P7 -> RES1

2:Op P2, RES1 -> RES2

3:Op RES2, L3 -> RES3

4:Op RES3,RES2 -> RES4

New map table

Dependencies marking and

register renaming (2)

22

OK, where are we ?

• Very long pipeline:

 ≈ 15-20 cycles before execution stage

 Misprediction is a disaster

• Very wide-issue

 Need to fetch/decode/rename ≧ 8 inst/cycles

 mis(Fast prediction) is an issue

 Misses on I-caches/BTB also a problem

23

Why branch prediction ?

• 10-30 % instructions are branches

• Fetch more than 8 instructions per cycle

• Direction and target known after cycle 20

 Not possible to lose those cycles on each branch

 PREDICT BRANCHES

 and verify later !!

2424

global branch history
Yeh and Patt 91, Pan, So, Rameh 92

B1: if cond1

B2: if cond2

B3: if cond1 and cond2

B1 and B2 outputs determine B3 output

Global history:

vector of bits (T/NT) representing the past branches

Table indexed by PC + global history

25Exploiting local history

Yeh and Patt 91

25

for (i=0; i<100; i++)

for (j=0;j<4;j++)

loop body

Look at the 3 last occurrences:

If all loop backs then loop exit

otherwise: loop back

•A local history per branch

•Table of counters indexed with PC + local history

26Speculative history must be managed

!?

• Local history:

 table of histories (unspeculatively updated)

 must maintain a speculative history per inflight

branch:

 Associative search, etc ?!?

• Global history:

 Append a bit on a single history register

 Use of a circular buffer and just a pointer to

speculatively manage the history

27Branch prediction:

Hot research topic in the late 90’s

• McFarling 1993:

 Gshare (hashing PC and history) +Hybrid predictors

• « Dealiased » predictors: reducing table conflicts impact

 Bimode, e-gskew, Agree 1997

Essentially relied on 2-bit counters

28EV8 predictor (1999):

(derived from) 2bc-gskew

e-gskew

Michaud et al 97

Learnt that:

- Very long path correlation exists

- They can be captured

29

In the new world

30

A UFO : The perceptron predictor

Jiménez and Lin 2001

∑

Sign=prediction

X

signed 8-bit

Integer weights
branch history

as (-1,+1)

Update on mispredictions or if |SUM| <

31

(Initial) perceptron predictor

• Competitive accuracy

• High hardware complexity and latency

• Often better than classical predictors

• Intellectually challenging

32

Rapidly evolved to

+
Can combine predictions:

-global path/branch history

-local history

-multiple history lengths

- ..

4 out of 5 CBP-1 (2004)

finalists based on

perceptron,

33

An answer

• The geometric length predictors:

 GEHL and TAGE

34The basis : A Multiple length global

history predictor

L(0)
?

L(4)

L(3)

L(2)

L(1)

T0

T1

T2

T3

T4

With a limited number of tables

35

Underlying idea

• H and H’ two history vectors equal on N bits,

but differ on bit N+1

 e.g. L(1)NL(2)

• Branches (A,H) and (A,H’)

biased in opposite directions

Table T2 should allow to discriminate

between (A,H) and (A,H’)

36

GEometric History Length predictor

L(i) = ai-1L(1)

0 L(0) =

The set of history lengths forms a geometric series

{0, 2, 4, 8, 16, 32, 64, 128}

What is important: L(i)-L(i-1) is drastically increasing

Spends most of the storage for short history !!

37

L(0)
∑

L(4)

L(3)

L(2)

L(1)

TO

T1

T2

T3

T4

Prediction=Sign

GEHL (2004)

prediction through an adder tree

Using the perceptron idea with geometric histories

38TAGE (2006)

prediction through partial match

pc h[0:L1]

ctr utag

=?

ctr utag

=?

ctr utag

=?

prediction

pc pc h[0:L2] pc h[0:L3]

1
1 1 1 1 1 1

1

1

Tagless base

predictor

39The Geometric History Length

Predictors

• Tree adder:

 O-GEHL: Optimized GEometric History Length

predictor

 CBP-1, 2004, best practice award

• Partial match:

 TAGE: TAgged GEometric history length predictor

+ geometric length

+ optimized update policy

 Basis of the CBP-2,-3,-4,-5 winners

• Inspiration for many (most) current effective designs

40

A BP research summary (CBP1 traces)

 2bit counters 1981: 8.55 misp/KI

 Gshare 1993: 5.30 misp/KI

 EV8-like 2002 (1999): 3.80 misp/KI

 CBP-1 2004: 2.82 misp/KI

 TAGE 2006: 2.58 misp/KI

 TAGE-SC 2016: 2.36 misp/KI

Hot topic, heroic efforts:

win 28 %,

No real work before 1991:

win 37 %

The perceptron era, a few actors:

win 25 %

A hobby for AS and DJ :

win 10%,

TAGE introduction:

win 10%,

41

And indirect jumps ?

TAGE principles to indirect jumps:

“A case for (partially) tagged branch

predictors”, JILP Feb. 2006

The 3 first ranked predictors at 3rd CBP in

2011 were ITTAGE predictors

42

Memory (in)dependencies predictors

To allow load and stores to execute out-of-order

 Naive: dependent/independent

 Wait: e.g. Store sets

 Store forwarding: bypass the cache

 Register producer to consumer forwarding

43

A speculation opportunity on RISC ISA

IF, DC, Rename, Dispatch Execution Commit

In order Out of order In order

Predict

an event

Verify the

event

Correct on

misprediction

Predictor

update

A branch is not load, a load is not an

indirect branch, an indirect branch is

not a conditional branch, and at

prediction time we do not even know

the instruction type ..

44

The Omnipredictor (PACT 2018)

Consolidating several types of speculation in a single

predictor structure : TAGE.

Memory dependency prediction and indirect target

prediction through TAGE and the BTB at zero storage

overhead.

Omnipredictor: a good fit for mid-range cores with

constrained hardware budget

45

Value Prediction ?

• Also in the front-end ..

 Predictions should be done in the front-end

 Control-flow could be used to predict

 Values

 Value equality

 Register equality

46

Issues in Front-End

• High instruction footprint applications (servers,

cloud, web browsers, ..)

 Instruction cache misses

 BTB misses

47

Summary

• Single thread performance was, is and will be a

major issue:

 Industry is eager to deliver, but limited progress

• More « a la grand papa » microarchitects needed

48

A few relevant publications

• A. Seznec, S. Felix, V. Krishnan, Y. Sazeides , “Design trade-offs on the

EV8 branch predictor“, ISCA 2002

• A. Seznec, P. Michaud, “ A case for (partially) tagged Geometric

History Length Branch Prediction”, JILP, Feb. 2006,

• A. Perais ,A. Seznec. Practical Data Value Speculation for Future High-

end Processors. HPCA 2014

• A. Perais, F.A. Endo, A.Seznec. Register Sharing for Equality Prediction.

Micro 2016,

• A. Perais, A. Seznec, Cost Effective Speculation with the Omnipredictor

PACT ’18

ftp://ftp.irisa.fr/local/caps/EV8BP.ps
http://www.irisa.fr/caps/people/seznec/JILP-COTTAGE.pdf
http://people.irisa.fr/Arthur.Perais/data/HPCA%2714_Practical_VP.pdf
https://hal.inria.fr/hal-01888884

