
The RISC-V Week, Paris, October 1-3

An Out-of-Order RISC-V Core Developed with HLS

Bernard Goossens and David Parello

Université de Perpignan Via Domitia, DALI-LIRMM

1 / 15



Outline

1 The Out-of-Order RISC-V Core Microarchitecture

2 The RISC-V OOO core : an educational kernel tool to be expanded

3 The RISCV OOO core : the main building block of the LBP processor

4 Conclusion

2 / 15



Section 1

The Out-of-Order RISC-V Core Microarchitecture

3 / 15



The 4-stages pipeline

fetch

rename code

rename

nPC

execute

issue
IT FU WBTRRFrd

write back WBT RRFwr commitT

commit commitT free renaming

next PC or suspend PC

PC

IT

next PC and activate PC propagate to
waiting sources

free previously allocated RRF

Four concurrent stages, No cache, Flat memory, No branch predictor

Fetch blocked by cond. or indir. branch decode, unblocked by its computation

Compatible with Multicycles Functional Units

RISCV32IM ISA
4 / 15



The HLS code

Xilinx Vivado hls code written in two weeks by one person

9 C files, 6 header files, less than 4000 lines

Optimized with Vivado hls constraints to fit each stage in the by default 10ns
cycle

Multiple ports on BRAM variables (e.g. table of architectural register
renaming)
Full unrolling of arrays and loops (e.g. IT table)
Elimination of dependencies (e.g. PC write in execute stage and read in fetch
stage)

Estimation of speed and area on Catapult (Simon Rokicki, Cairn team at
Inria)

ASIC, technology 28nm FDSOI, 700 MHz : 50 300 µm2 (Comet in-order =
8168 µm2)
FPGA, Xilinx ZCU106, 100Mhz : 9146 LUT, 11215 FF, 970 Mux (Comet =
2032, 1503, 260)
64x32-bit renaming registers, 64x99-bit entries instruction table, 64*15-bit
ROB, 32*7-bit renaming table, 64*6-bit free rr list, 64*6-bit free it list : 10336
FF

5 / 15



Section 2

The RISC-V OOO core : an educational kernel tool to
be expanded

6 / 15



Adding speculation

execute

issue
IT FU WBTRRFrd

write back WBT RRFwr commitT

commit commitT free renaming

free previously allocated RRF

propagate to
waiting sources

fetch PC

pred

predicted next PC

rename IB rename

IB

IT

codecorrected next PC

empty

empty

empty

empty

A branch predictor
Allows to separate decoding and renaming from fetch
Can be enhanced with checkpointing (correct PC and reconstruct renaming
at WB)

7 / 15



Other enhancements

Increasing the superscalar degree

Adding multicycle execution pipelines (e.g. pipelined multiplier)

Hierarchizing memory

Adding an FPU

Multithreading

8 / 15



Section 3

The RISCV OOO core : the main building block of the
LBP processor

9 / 15



The Little Big Processor (LBP) : a manycore

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
2

r
2

r
2

r
2

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

mc

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

r
3

m
m

m
m

m
m

m
m

mc

mc

mc

mc

mc

mc

mc

mc

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

m
m

An extension of the RISC-V OOO core is the building block of the 64-core
LBP processor
The LBP processor is a manycore multithreaded design with an inter-thread
communication capability
The LBP processor is able to catch arbitrary distant ILP

10 / 15



LBP captures distant ILP

LBP divides a run into threads

Threads are ordered to reflect the sequential semantic of the application

Threads are run in parallel

Threads are spreaded on the LBP harts (fork/join model)

The main obstacles to inter-thread ILP capture are removed (no stack, no
control flow dependency, new register file)

The available ILP is the sum of the threads individual ILPs

The ILP is proportional to the data size

11 / 15



LBP is a deterministic processor

No interrupt

A single application

Perfect isolation (no interference from the external world or between
concurrent applications)

If the appication is isolated from the external world, it is cycle deterministic

Otherwise, it is run in a deterministic partial order

12 / 15



64-core LBP in HLS

Xilinx Vivado hls code written in two months by one person

10 C files, 7 header files, less than 7500 lines

Tested with the Vivado simulator (e.g. Parallelized tiled matrix multiplication)

Implementation on ZCU106 in progress

estimation : 3500 FF (0.75%) (64-core LBP = 48%)

16x32-bit renaming registers, 16x91-bit entries instruction table, 16*13-bit
ROB, 32*5-bit renaming table, 16*4-bit free rr list, 16*4-bit free it list : 2464
FF

13 / 15



Section 4

Conclusion

14 / 15



Conclusion

A RISC-V OOO processor implemented from HLS tools

Code available on demand (tared source files, no installation required)

HLS is now adult and can be used in replacement of VHDL/Verilog, at least
for prototypes

15 / 15


	The Out-of-Order RISC-V Core Microarchitecture
	The RISC-V OOO core: an educational kernel tool to be expanded
	The RISCV OOO core: the main building block of the LBP processor
	Conclusion

