EUROPEAN PROCESSOR INITIATIVE: CHALLENGES & OPPORTUNITIES FOR RISC-V ACCELERATORS IN AN HPC PLATFORM

FRAMEWORK PARTNERSHIP AGREEMENT IN EUROPEAN LOW-POWER MICROPROCESSOR TECHNOLOGIES

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION'S HORIZON 2020 RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO 826647

INTRODUCTION TO THE EPI

EUROPEAN PROCESSOR INITIATIVE

- High Performance General Purpose Processor for HPC
- High-performance RISC-V based accelerator
- Computing platform for autonomous cars
- Will also target the AI, Big Data and other markets in order to be economically sustainable

EUROPEAN PROCESSOR INITIATIVE

www.european-processor-initiative.eu

PROJECT PILLARS

- Common platform and global architecture stream
- HPC general purpose processor stream
- Accelerator stream
- Automotive platform stream

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 826647

EPI STREAMS

SI - Common Stream

Codesign, Architecture, System software and key technologies for the Common Platform

S2 - GPP Processor

Design and implement of the processor chip(s) and PoC system

S3 - Acceleration

Foster acceleration technologies and create building blocks

S4 - Automotive

Address automotive market needs and create a pilot eHPC system

S5 - Administration

Manage and support activities

GPP AND COMMON ARCHITECTURE

Copyright © European Processor Initiative 2019. RISC-V Week / 2019-10-02

EPAC - RISC-V ACCELERATOR

- EPAC EPI Accelerator
- VPU Vector Processing Unit
- STX Stencil/Tensor accelerator
- VRP VaRiable Precision co-processor

EPI HARDWARE

GENERAL ARCHITECTURE

- Memory-coherent NoC connects
 - Array of computing units (CU)
 - Memory and I/O controllers
 - Bridge to links
- High speed links
 - D2D links to connect on-package dies
 - HSL links to connect on-board packages
- Top level infrastructures
 - Power management & controller
 - Security

NoC: network on chip

HSL: High speed links (with memory coherent support)

GENERAL ARCHITECTURE (#2)

- Interfaces to connect acceleration functions to the NoC
 - Data access and sharing throught AXI ports
 - Receiving interrupt
 - Power management
- Enable memory-centric computations
 - Same copy of dataset is shared by multiple CUs
 - In the ext. memory (DDR or HBM) cached by SLC cache
 - In the local scratch memories near or local the acceleration blocks
 - System MMU to provide same virtual memory view

Power Management Acceleration block infrastructure #1 Interrupt network AXI slave port AXI master port Acceleration Armv8 CPU Acceleration core with SVE block #1 block #2 dataset shared by NoC with SLC cache acceleration blocks dataset shared in memory ext. Memory (HBM or DDR)

CU: Computing Unit; either Armv8 core with SVE or the EPAC/MPPA acceleration blocks SLC: System Level Cache; a last-level cache before ext. memories

ACCELERATOR STREAM IN EPI ROADMAP

EPAC ARCHITECTURE VIEW

- The Vector Lanes act as tighlty coupled acceleration units to the scalar core
- The Specialized Units act as loosely coupled acceleration units to the scalar cores
- Up to 8 vector processors per tile
- Up to 8 STX units per tile
- Shared L2 cache banks
- Cache coherent NoC

EPI SOFTWARE

EPI SOFTWARE AMBITIONS IN HPC

- Complement the already existing software to supply an entire HPC production stack
- Deployment/administrative side
 - Securing the node
 - Power managing the node
 - Booting the node
 - (Remote) controlling the node
 - Running a Linux distribution on the node
 - Managing various nodes in a large system
 - Monitoring & accounting various nodes in a large system

- End-user side
 - Compiling software for the General Purpose Processor
 - Compiling software for the Accelerators
 - Combining the use of GPP & Accelerators in a software
 - Leveraging standard libraries tuned for the node
 - Running the software on a node
 - Running the software on multiple nodes in a system
- Automotive requirements
 - Security, power
 - Predictable performance for autonomous driving
 - Multiple inputs, complex models

STANDING ON THE SHOULDERS OF SUCCESSFUL EUROPEAN PROJECTS

European Processor Initiative

HPC Arm Software Stack

Mont-Blanc 3
 helped create
 and stabilize
 most of the
 foundations
 of a full HPC
 software
 stack on Arm

+ Contribution to OpenHPC (from 1.2)

European **Processor** Initiative

EPI ECOSYSTEM

(INCLUDING POTENTIAL OUTSIDE PARTNERS)

EPI Reference Hardware

EXPANDING TO RISC-V

- The RISC-V architecture is used extensively in EPI
 - EPAC accelerator, Power Management, ...
- It is fully open and not reliant on one company for its definition
- The software ecosystem is not yet has developed as the Arm one
 - Mont-Blanc projects were instrumental in maturing the Arm ecosystem
- EPI software work includes work to bring RISC-V closer to the need of a production-ready general-purpose processor

- MPI work on RISC-V & hybrid
- OpenMP runtime on RISC-V
 - For offloading & native mode
- Compiler work
 - Including OpenMP SIMD
- Using RISC-V in the industrial world as a fullfledged, linux-capable processor and not just a microcontroller
 - Real-life use to strengthen the software

ACHIEVING AMBITIONS – END-USER

- Compiling, combining
 - Leveraging work from existing Open Source projects: GNU, LLVM
 - Choosing open standard over proprietary solutions
 - Emphasis on OpenMP in the project
 - OpenVX for automotive
 - Working with external partners
 - Arm work in LLVM & libraries for the GPP
 - EPI adding missing pieces to fully exploit the Common Platform design
 - Better vectorization in EPAC
 - OpenMP offloading
 - OpenMP SIMD

European Processor

EPAC TILE ARCHITECTURE (1)

- Tile: Vector cores, STX, VRP, Shared L2 cache
- Vector Core :
 - RISC-V Vector extensions
- STX
 - RISC-V, NTX + Stencil
- VRP
 - RISC-V + Extended precision FPU
- Shared cache
 - ~ small; 8 banks
- Tile NOC
 - BW: ~ 1 line / cycle
- Bridge
 - I/O coherence to GPP

EPAC TILE ARCHITECTURE (2)

- Multiple OSes and runtimes running simultaneously
- Some accelerators
 Linux-capable, some targeting bare-metal runtime

RV32

EPAC TILE ARCHITECTURE (3)

European Processor Initiative

- Goal is to fully support OpenMP offloading ("target") for all accelerators
- Also, support zerocopy acceleration
 - Sharing application's virtual space between the Arm host and the RISC-V accelerators

EPAC TILE ARCHITECTURE (4)

- Programming model includes for instance Host MPI + individual OpenMP offloading (illustrated)
- Accelerators can be seen as one large accelerator, or multiple smaller accelerators
- Also working on MPI for Linux-capable accelerators for heterogenous MPI

RISC-V IN EPI

- RISC-V already boots on its own
 - HiFive Unleashed, QEMU
- Needs to port some basic infrastructure
 - Self-hosted OpenMP, MPI, etc.
 - Vector, STX, VBR compiler(s) & tools, etc.
- Needs to adapt some existing infrastructure to the EPI architecture
 - Booting/initialization (OpenSBI)
 - Kernel, bare-metal runtimes
 - OpenMP offloading
 - Heterogeneous MPI

- Needs to figure out how to efficiently implement some aspects of our ambitions
 - Booting, securing, avoiding conflicts
 - Bridging NoCs between Arm and RISC-V domains
 - Physical addressing
 - Communications mechanisms
 - Enabling virtual memory sharing between Arm and RISC-V domains
 - MMUs with different properties
 - I/OMMU
 - Unforeseen issues ...
- Also, more independent RISC-V such as PowerManagement

COMMON PLATFORM

HETEROGENEOUS INTEGRATION

- Integrating customized functions at different levels
 - EPI accelerator IPs today is integrated in RheaR1 design
- Leverage the HW infrastructure for other accelerators or implementations
 - Coherent chiplet (in-package) via D2D interface
 - Coherent external accelerators via CCIX

memories

- Leverage the software work to facilitate exploitation
 - OpenMP offloading

SIPEARL - Common Platform

The Common Platform will leverage our investment due to limited time-to-market and costs to develop our own platform, enabling AI start-ups to make huge savings on licences

WE ACCELERATE ACCELERATORS !!!!

THANK YOU

ROMAIN.DOLBEAU@EUROPEAN-PROCESSOR-INITIATIVE.EU ROMAIN.DOLBEAU@ATOS.NET

