
Complete Formal Verification of RISC-V
Cores for Trojan-Free Trusted ICs

Sergio Marchese

Technical Marketing Manager

OneSpin Solutions

sergio.marchese@onespin.com

| © 2019 OneSpin SolutionsPage 2 2nd RISC-V Meeting - Paris

Abstract

RISC-V processor IPs are increasingly being integrated into system-on-chip designs for a variety of
applications. However, there is still a lack of dedicated functional verification solutions supporting high-
integrity, trusted integrated circuits.

This presentation examines an efficient, novel, formal-based RISC-V processor verification
methodology. The RISC-V ISA is formalized in a set of Operational SystemVerilog assertions. Each
assertion is formally verified against the processor’s RTL model. Crucially, the set of assertions is
mathematically proven to be complete and free from gaps, thus ensuring that all possible RTL
behaviors have been examined. This systematic verification process detects both hardware Trojans
and genuine functional errors present in the RTL code.

The solution is demonstrated on an open-source RISC-V implementation using a commercially
available formal tool, and is arguably a significant improvement to previously published RISC-V ISA
verification approaches, advancing hardware assurance and trust of RISC-V designs.

| © 2019 OneSpin SolutionsPage 3 2nd RISC-V Meeting - Paris

IC Integrity
Functionally correct, safe, secure, and trusted SoCs/ASICs/FPGAs

Design Integration Implementation

IC Integrity

SoC/ASIC/FPGA Verification Flow

OneSpin provides

certified IC Integrity

Verification

Solutions to develop

functionally correct,

safe, secure, and

trusted integrated

circuits.

Functional

Correctness
Safety

Trust and

Security

| © 2019 OneSpin SolutionsPage 4 2nd RISC-V Meeting - Paris

Agenda

RISC-V verification and trust assurance challenges

RISC-V Integrity Verification Solution

Case study: Rocket Core

| © 2019 OneSpin SolutionsPage 5 2nd RISC-V Meeting - Paris

RISC-V Background

Developed at the University of California, Berkeley

Instruction set architecture (ISA) designed for flexibility

Free, open-source and royalty-free

Supported by the RISC-V Foundation

• More than 200 members, including OneSpin

OpenHW Group

• Not-for-profit organization

• Provides high-quality open-source HW

• CORE-V: family of RISC-V cores

• OneSpin is a sponsor

"The Free and Open RISC ISA”

| © 2019 OneSpin SolutionsPage 6 2nd RISC-V Meeting - Paris

Functional Verification of RISC-V Cores

Processor cores are hard to verify
• Complex microarchitecture to achieve PPA targets
• Branch prediction, forwarding, out-of-order execution …

Formal verification
• Exhaustive analysis finds corner-case bugs
• The only technology with potential to prove

absence of bugs

Challenges
• Complexity issues lead to bounded proofs
• Hard to write good quality, reusable assertions

Does the RTL correctly implement the RISC-V ISA spec?

=

| © 2019 OneSpin SolutionsPage 7 2nd RISC-V Meeting - Paris

Trust Assurance and Security Verification
Require new solutions, metrics, processes

Functional

Correctness
Safety

Trust and

Security

Does the IC

do what it is

supposed to do?

Use Cases

Does the IC

do anything that it is

not supposed to do?

Trojans, Misuse Cases

| © 2019 OneSpin SolutionsPage 8 2nd RISC-V Meeting - Paris

Trust Assurance for Integrated Circuit (IC)
All stages of the supply chain are vulnerable

Source: DARPA

| © 2019 OneSpin SolutionsPage 9 2nd RISC-V Meeting - Paris

Hardware Trojans Taxonomy
Anatomy: triggers on rare, hidden condition - delivers damaging payload

Source: Trust-Hub

| © 2019 OneSpin SolutionsPage 10 2nd RISC-V Meeting - Paris

Trust Assurance Challenges
Functional hardware Trojans are NOT bugs

IPs are complex and

support a variety of

configurations

Code review unlikely to

spot malicious code

Functional verification

targets bugs, not

deliberately stealthy

Trojans

ASIC/FPGA/SoC developers need automated processes to

increase confidence in IP trustworthiness

| © 2019 OneSpin SolutionsPage 11 2nd RISC-V Meeting - Paris

RISC-V ISA Specification

Architecture

registers

(register file(s),

PC, CSRs, …)

Instruction

Exception
Defines

architecture

registers

May define initial

values

op_a = R[RS1]

addr = op_a + imm

result = M[addr]

R[RD] = result

LW

RS1imm 0000011010

7 615 1420 19 031

RD

12 11

Architecture

registers

(register file(s),

PC, CSRs, …)

Defines update of

architecture registers and

memory requests

| © 2019 OneSpin SolutionsPage 12 2nd RISC-V Meeting - Paris

Formalized User-Level ISA

• Captures effect of instructions on architecture state and output to memory

• Formalized in SystemVerilog Assertions (SVA)

32'bXXXXXXXXXXXXXXXXX010XXXXX0000011:

decode.instr = LW;

decode.RS1.valid = 1’b1;

decode.RD.valid = 1’b1;

decode.imm = $signed(iw[31:20]);

decode.mem = 1’b1;

…

ISA formalization

excerpt for LW

| © 2019 OneSpin SolutionsPage 13 2nd RISC-V Meeting - Paris

Pipelined Microarchitecture Verification

Various implementation choices for microarchitecture

• Specific pipeline length

• Forwarding paths to decode state and other stages

• Separate ICache/ DCache units with specific protocols

• Branch prediction for instruction fetch unit

• Stalling of pipeline stages or replay mechanism

• Out-of-order termination for long-latency instructions (like DIV, DCache miss)

Verification links pipeline to sequential execution of instruction

• Capture full effect of one instruction/exception in one property

• Independent of preceding or succeeding instructions

• Next sequential instruction “starts” when leaving decode

| © 2019 OneSpin SolutionsPage 14 2nd RISC-V Meeting - Paris

Operational Assertions

Formally captures single DUV operation

• Suppose part describes cause – when does assertion apply

• Prove part specifies effect - intended behavior in that case

Operation

suppose

prove

t##0 t##1

start

state

outputs

inputs

end

state

Effect

Cause

| © 2019 OneSpin SolutionsPage 15 2nd RISC-V Meeting - Paris

OneSpin’s GapFreeVerification™

RISC-V ISA expressed using OneSpin’s Operational Assertions

• Standard SystemVerilog assertions following a strict template

• Assertions define results for each instruction

• Assertions cover instruction decode to completion

Enables automated unbounded proof of all assertions

Trojans or other unexamined logic cause failure of
completeness proof

• Formal check of core’s RTL against the RISC-V ISA

• Reveals any hidden logic that impacts core’s functionality

Proof that RISC-V assertions cover all possible core behaviors

Operational SVA

RISC-V Core

=

| © 2019 OneSpin SolutionsPage 16 2nd RISC-V Meeting - Paris

GapFreeVerification

Achieving 100% functional coverage with SystemVerilog assertions (SVA)

GapFreeVerification™ rigorous completeness definition

• A set of assertions P (formal testbench) is complete if every two designs C1, C2 satisfying the assertions
in P are sequentially equivalent (for every, arbitrarily long input trace, C1 and C2 produce the same
output trace)

Many hardware trust issues are very hard-to-find bugs

• GapFreeVerification makes no distinction between “malicious” and “naturally occurring” bugs

Rigorous Mathematical Foundation

Efficient Methodology Industrial-Scale Technology

| © 2019 OneSpin SolutionsPage 17 2nd RISC-V Meeting - Paris

Case Study: Rocket Core
Pipelined implementation

• 64-bit core

• 5-stage pipeline

• Single-issue, in-order pipeline

• Out-of-order completion of long

latency instructions (e.g., DIV)

• Branch prediction

• Instruction replay

• Verified

• Taped-out multiple times

| © 2019 OneSpin SolutionsPage 18 2nd RISC-V Meeting - Paris

Project Scope

• Verification of core pipeline and CSRs

• Integer, compressed, atomics instructions

• Multiplication/division unit (control logic only)

• Exception handling and interrupt events

• Consistency of special instructions (LR, SC, fence)

• FPU excluded

Case Study: Rocket Core

| © 2019 OneSpin SolutionsPage 19 2nd RISC-V Meeting - Paris

Case Study: Rocket Core
Issues

* https://github.com/freechipsproject/rocket-chip/issues/

Design issues reported*:

• Issue 1757: Jump instructions store different return PC - instruction fetch

unit responsible to prevent this issue

• Issue 1752: DIV result not written in register file

• Issue 1861: Replay of illegal opcodes / generating memory accesses -

Illegal opcodes not throwing an exception

• Issue 1868: Undocumented non-standard instruction - opcode

32'h30500073 / CEASE instruction

• Issue 1949: Undocumented CSR that reads back 0

Highlights

• Each property returns a result in less than 10 minutes with helper assertions

• Each property returns a result in max. 5 hours w/o helper assertions

• Two hours runtime

• Unbounded proofs

• Low effort (few days) to set up

Confirmed, fixed, closed

Acknowledged

Document update pending

Under investigation

Under investigation

| © 2019 OneSpin SolutionsPage 20 2nd RISC-V Meeting - Paris

Case Study: Rocket Core - GOMACTech 2019

| © 2019 OneSpin SolutionsPage 21 2nd RISC-V Meeting - Paris

Summary

RISC-V ISA formalized as SystemVerilog Assertions (SVAs)

• Decoupled from microarchitectural details

Enables 100% unbounded formal proof

• Proves that core is functionally correct

• Match or exceed quality of established ISA implementations

• Applies to 3PIP cores, open-source cores

• Applies to in-house custom extensions, optimized implementation

Detects hidden functions and hardware Trojans

• Achieves trust assurance

Industry’s first RISC-V Integrity Verification Solution

RISC-V SVAs

RISC-V Core

=

| © 2019 OneSpin SolutionsPage 22 2nd RISC-V Meeting - Paris

Additional Information

onespin.com/solutions/risc-v

Formal Verification of RISC-V Cores
onespin.com/blog

Complete Formal Verification of RISC-V Processor IPs for Trojan-Free Trusted ICs
Government Microcircuit Applications & Critical Technology (GOMACTech) Conference
Albuquerque, NM, USA, 2019

sergio.marchese@onespin.com
Drop me an email to request a copy of the GOMACTech paper and for additional information

Learn more about RISC-V integrity verification

