
Development of an RV64GC IP core for
the GRLIB IP Library

Johan Klockars
Cobham Gaisler

info@gaisler.com

www.Cobham.com/Gaisler

Agenda

2

Background What is NOEL-V?

01 03 04
For who is NOEL-V? Development

0705 08
Verification

05
Pipeline

06

Background

3

www.Cobham.com/Gaisler

Cobham Gaisler AB

• Cobham Gaisler is a world leader in processors for space
applications like satellites & launchers

• Located in Gothenburg, Sweden

• Established in 2001 and acquired by Aeroflex in 2008

• Fully owned subsidiary of Cobham plc since 2014

• Management team with >100 years combined experience in
the space sector:

• 34 employees with expertise within electronics,
ASIC and software design

• Complete facilities in-house for ASIC and FPGA design

• Cobham has 15+ years experience designing open hardware

• RISC-V Foundation member 2019

Since 2 December 2014

4

www.Cobham.com/Gaisler
5

To provide processors that
enable new scientific missions, and

allow new ways to utilize space
constellations for commercial use.

www.Cobham.com/Gaisler

Cobham Gaisler Processor Solutions

One-Stop-Shop

6

FT LEON3/LEON4
Processor Components

Synthesizable IP Core Library

System Testbeds

Development
Boards

FT FPGA Processors

Simulators, Debuggers,
Operating Systems, Compilers

www.Cobham.com/Gaisler

GRLIB Distributions:
GPL, Commercial, Fault-Tolerant

7

• LEON3

• GPTimer

• IRQ-MP

• MCTRL

• AHB, APB

• PCI

• FTMCTRL

• MEMSCRUB

• RS, QEC/QED

• CAN

• GRPCI2

• JTAG-TAP

• AHBBRIDGE

• UART

• JTAG

• AHBRAM

• 10/100 ETH

• I2C

• SPI

• VGA

• CLKGATE

• GRTIMER

• GBIT ETH

• NANDFCTRL

• SSRAMCTRL

• NOEL-VFT

• LEON3FT

• FTAHBRAM

COM

GPL

FT Separately licensed:

• Full list of cores available in
http://gaisler.com/products/grlib
/grlib.pdf

• FPU (-lite)

• SPW

• 1553

• USB

• IOMMU

• L2CACHE

• AES, ECC

• CAN-FD

• LEON4

Cobham is now a Multi-Architectural Company

Cobham continues to be committed to and
invested in the SPARC architecture and its LEON
implementations.

SPARC/LEON will be maintained and further
developed going forward. The company has
customers expecting it to provide components
and support for decades to come. This is also
ensured via long term supply agreements.

The RISC-V architecture is expected to grow in
the future with a larger number of developers
compared to SPARC V8.

Going forward, Cobham will add RISC-V to its
product portfolio as a complement to SPARC
and ARM, not as a replacement.

What is
NOEL-V?

www.Cobham.com/Gaisler

NOEL-V Processor Core

Primary goals:

• RISC-V 64-bit compliant processor core

• Fault Tolerance - Error Correction Codes (ECC)

• Cybersecurity (proprietary solutions)

• Enable ISO 26262/FUSA certification (Road vehicles
– Functional safety)

• Leverage foreseen uptake of RISC-V software and
tool support in the commercial domain

• Compatible with GRLIB IP Core library

Target applications:

• General purpose payload processing

• Mixed platform and payload applications

• With future DDR4 SDRAM controller, specifically
targeted for space applications

Target technologies:

• ASIC implementations for space applications

• High-end space FPGAs: Kintex Ultrascale

www.Cobham.com/Gaisler

NOEL-V Features

• RISC-V RV64GCN

− M mul/div

− F 32 bit float

− C 16 bit instructions

• 7-stage dual-issue in-order

• Late ALUs and branch unit

• M/S/U with MMU

• SMP/AMP hardware coherency

• RISC-V PLIC

• Multi-core

11

− A atomics

− D 64 bit float

− N user-level interrupts

• Dynamic branch prediction

• Blocking write-through L1

• PMP

• Hypervisor (pending standardization)

• RISC-V debug specification

• AMBA 2.0 AHB
(subsystems with L2 cache and AXI4)

www.Cobham.com/Gaisler

Fault tolerance

• For space, fault tolerance is necessary.

• Various choices regarding ECC, parity etc.

• What to do when non-correctable RAM errors are detected?

• Requirement:

− Deterministic and safe behavior.

• Wish:

− Be able to log the fault, on best-effort-basis, to external storage.

• RISC-V leaves CPU response on HW fault to the implementation

− no dedicated exception number assigned for bus access fault, IU
register error, FPU register error, etc.

− no semantic on CPU response to the above events

−mtval may not be enough (SW-writable, nesting faults?)

• NOEL-V approach to be determined.
12

www.Cobham.com/Gaisler

Combined processor roadmap

13

RISC-V roadmap

www.Cobham.com/Gaisler

NOEL-V Performance

•No work on compiler/libraries for NOEL-V yet.

•Testing on Kintex Ultrascale (KCU105) at 100 MHz.

• LEON5 has been measured at (Cobham gcc):

− 3.14 DMIPS/MHz
(-O3 and all files are combined during compilation)

− 4.57 Coremark/MHz
(-O3 -mcpu=leon5 -msoft-float -DPERFORMANCE_RUN=1

-funroll-all-loops -finline-functions -finline-limit=1000)

• Very preliminary, NOEL-V simulated (standard toolchain)

− 4.36 CoreMark/MHz (ee_u32 as signed)

14

www.Cobham.com/Gaisler

NOEL-V Relation to LEON5

• Related micro-architectures, but separate teams.

• NOEL-V development started later, so reuse.

• Partial reuse

− Principles of the integer pipeline

− Similar branch prediction

• Complete (more or less) reuse

− FPU

− Instruction and data cache

− MMU and cache controller

15

www.Cobham.com/Gaisler

NOEL-V Synthesis configurability

Planned

• MCADFN

• Virtual address space

• Late ALU

• Caches

• TLB

• Branch prediction

Possibilities for later

• 32 bit

• Non-standard instructions

16

• U/S (MMU)

• Physical address space

• Late branch

• FPU

• PMP

• Single-issue

• B / P / V

• ...

For who is

NOEL-V?

www.Cobham.com/Gaisler

Why another RISC-V implementation?

• Cobham is developing its own RISC-V implementation:

− As opposed to licensing from 3rd party

• Full control of the design means short path to new custom
features

− I.e. not dependent on external IP

• Experienced processor team in-house

• GRLIB based implementation - existing infrastructure

• Allows for flexible license options

− Flight

− Commercial

− Educational

−Hobbyist

18

www.Cobham.com/Gaisler

Licensing model

⚫ Parts of GRLIB are under an open license

⚫ The intention is to do the same with NOEL-V

− GPL, CC, CERN OHW, solderpad,...

− Any user can evaluate on FPGA development board

− Academic use without complicated license setup

− Hobbyists

• Fault-tolerant functionality in the flight license

− Netlist, encrypted RTL

• NOEL-V will be distributed from Q1 2020

19

Development

www.Cobham.com/Gaisler

NOEL-V Development

• Not Chisel, SpinalHDL, Lava, MyHDL, Migen,...

− Few developers familiar with them

− HW engineers often not computer scientists

− No support from tool vendors

• Not HLS

− Mostly as above

− Questionable performance

21

www.Cobham.com/Gaisler

NOEL-V Development

VHDL

• Really nice, when used “the right way”

• Very common, in Europe at least

− We can find developers

− Our users can understand

• Well established among customers in the space domain

• Good tool support

− Including free simulator

− Logical equivalence checkers

• GRLIB and LEON3-5

22

www.Cobham.com/Gaisler

NOEL-V Development

• “Classic” VHDL, to maximize tool support

• Strive for code clarity, and rely on the tools!

− Gaisler two-process implementations
(www.gaisler.com/doc/structdesign.pdf)

⚫ Combinational
with a few record output signals,

one of which is total internal state

⚫ Clocked
generally only registers the above
internal state, and handles reset

− Small number of processes

− Few signals, mostly in/out/state records

− Variables

− Functions / procedures
23

www.Cobham.com/Gaisler

NOEL-V Development

• From “A Structured VHDL Design Method” by Jiri Gaisler.

24

www.Cobham.com/Gaisler

NOEL-V Development

• Algorithms easily extracted

• Easy to extend

• Readability = Maintainability

• Fast simulation

• Easier debugging and verification

• No simulation/synthesis discrepancies

25

www.Cobham.com/Gaisler

NOEL-V Development

• Example: Current NOEL-V integer pipeline

− 2 processes

⚫ Combinational, 2200 lines

⚫ Clocked, 60 lines

⚫ 53/22 procedures/functions, ~5000 lines
(not counting generic ones from other files)

− 17 in port signals

− 13 out port signals

− 4 local signals (+12 for disassembler)

• The in/out ports connect to separate modules for:

caches, register file, branch prediction, IRQ, debug, mul/div.

26

www.Cobham.com/Gaisler

NOEL-V Development

• Example: Current NOEL-V cache controller and MMU

− 3 processes

⚫ Combinational, 3500 lines

⚫ Two clocked, one assignment each (+debug)

⚫ 10/45 procedures/functions, ~1500 lines
(not counting generic ones from other files)

− 12 in port signals

− 4 out port signals

− 4 local signals (+2 for debug)

• The in/out ports connect to:

AHB bus, caches, integer pipeline.

• Both LEON5 (Sparc) and NOEL-V (RISC-V)!

27

www.Cobham.com/Gaisler

NOEL-V Development

• Example: First half of the execute stage.
ex_flush := '0';
if wb_fence_i = '1' or v.wb.flushall = '1' or x_branch = '1' then

ex_flush := '1';

end if;

ex_branch_flush := '0';
if wb_fence_i = '1' or v.wb.flushall = '1' then

ex_branch_flush := '1';

end if;

ex_forwarding(...); -- Lane 0

ex_forwarding(...); -- Lane 1

branch_unit(...);

jump_ex_forwarding(...);

jump_unit(...);

alu_execute(...); -- ALU0

alu_execute(...); -- ALU1

ex_stdata_forwarding(…);

mul_gen(…);

for i in 0 to ISSUEWAYS-1 loop
ex_xc(i) := r.e.ctrl(i).xc;
ex_xc_cause(i) := r.e.ctrl(i).cause;
ex_xc_tval(i) := r.e.ctrl(i).tval;

end loop;

...

28

www.Cobham.com/Gaisler

NOEL-V Development

• Example: Detail from the execute stage.
-- Forwarding Lane 1 --
ex_forwarding(r, -- in : Registers

1, -- in : Lane 1
r.e.forw(1), -- in : Forwarded from Memory
ex_alu_op1(1), -- out : Output op1 from Mux
ex_alu_op2(1) -- out : Output op2 from Mux

);

-- Branch Unit --
branch_unit(ex_alu_op1(1), -- in : Forwarded Op1

ex_alu_op2(1), -- in : Forwarded Op2
r.e.ctrl(1).valid, -- in : Enable/Valid Signal
r.e.ctrl(1).branch.valid, -- in : Branch Valid Signal
r.e.ctrl(1).inst(14 downto 12), -- in : Inst funct3
r.e.ctrl(1).branch.addr, -- in : Branch Target Address
r.e.ctrl(1).branch.naddr, -- in : Branch Next Address
r.e.ctrl(1).branch.taken, -- in : Prediction
r.e.ctrl(1).pc, -- in : PC In
ex_branch_valid, -- out : Branch Valid
ex_branch_mis, -- out : Branch Outcome
ex_branch_addr, -- out : Branch Address
ex_branch_xc, -- out : Branch Exception
ex_branch_cause, -- out : Exception Cause
ex_branch_tval -- out : Exception Value

);

29

www.Cobham.com/Gaisler

NOEL-V Development

• Example: Extract from the MMU/cache controller.
entity mmu_cache5v2rv is
generic (…);
port (
rst : in std_ulogic;
clk : in std_ulogic;
ici : in icache_in_type4; -- I$ requests from iu5
ico : out icache_out_type4; -- replies
dci : in dcache_in_type4; -- D$ requests from iu5
dco : out dcache_out_type4; -- replies
ahbi : in ahb_mst_in_type; -- AHB replies
ahbo : out ahb_mst_out_type; -- requests
ahbsi : in ahb_slv_in_type; -- AHB snoop address
ahbso : in ahb_slv_out_vector; -- AHB config data
crami : out cram_in_type4; -- tags and data to cache
cramo : in cram_out_type4; -- tags and data from cache
csr : in csrtype; -- MMU and PMP configuration
sclk : in std_ulogic; -- sclk for snoop (not gated)
);

end;
…
comb: process(r, rs, rst, ici, dci, ahbi, ahbsi, ahbso, cramo, csr)

…
regs: process(clk)

…
sregs: process(sclk)

...

30

Verification

www.Cobham.com/Gaisler

NOEL-V Verification – how?

• Internally developed SystemVerilog framework

− Self-checking tests

− Match against golden model (spike)

⚫ Instruction by instruction
(some special handling, especially regarding time)

− Regression tests script

• Mainly Modelsim

− Mixed language

− Snap-shot for faster simulation

32

www.Cobham.com/Gaisler

NOEL-V Verification – what?

• Publicly available test suites,

− riscv-compliance

− riscv-dv

• Internal random generator

• OS kernels

− Zephyr

− Rvirt

− RTEMS

• Applications

• Coverage

• Targeted tests

33

such as

− riscv-tests

− riscv-torture

− RISC-V Proxy Kernel

− Linux

Pipeline

www.Cobham.com/Gaisler

NOEL-V Integer pipeline

35

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Fetch stage

• Configurable branch prediction

• Branch target buffer

• Branch history table

− Bimodal

− Two-level dynamic

36

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Decode stage

• Expands compressed instructions

• Checks for dual-issue conflicts

− One unit: Memory, branch, mul/div, CSR

− CSR write first

− A few more, but late ALU helps

• Swap instructions if needed

− Memory in 0

− Branch in 1

• Check for illegal or privileged instruction

• Check for RAS hit and early branch

37

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Register access stage

• Read register file and CSR

− RF is 4R/2W

• Generate ALU and instruction control

• Decide on early/late ALU/BU

• Pipeline bubbles only here

− Dependence on late ALU

− Non-commited CSR write to read CSR

− Memory access following MMU/PMP CSR write

− ...

38

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Execution stage

• Two equal ALUs

• Branch unit

• Combinational virtual address to data cache interface

• FPU and mul/div start here

39

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Memory stage

• Align data from cache

• Check TLB

• Check tags

− Virtually indexed, physically tagged

• L1 write-through, blocking

− Separate instruction and data caches

− Up to 4-way associative, LRU

• FSM to deal with cache/TLB miss, store buffer full

− Hardware page table walk

• Snooping for coherence

• Full PMP support, configurable

40

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Exception stage

• Two more full ALUs

• Another branch unit

• Write to CSR

• Collect exceptions

• External interrupts

41

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Write-back stage

• Write to register file

• Update branch prediction and RAS.

42

fetch decode

(issue)

register

access

(stall)

ALU0

ALU1

branch

late ALU0

late ALU1

late branch

memory

mul / div

FPU

write-back

exception

www.Cobham.com/Gaisler

NOEL-V Current pipeline in use

uintptr_t a[LENGTH], b[LENGTH], c[LENGTH];
…
for(int i = 0; i < LENGTH; i++) {
a[i] = b[i] + c[i];

}

loop:

ld a1, 0(a2)
addi a2, a2, 8
ld a4, 0(a5)
addi a3, a3, 8
addi a5, a5, 8
add a4, a4, a1
sd a4, -8(a3)

bne a5, a0, loop

43

www.Cobham.com/Gaisler

NOEL-V Current pipeline in use

Pairing when first instruction is not 8-byte aligned.

loop:

ld a1, 0(a2)

addi a2, a2, 8 swapped
ld a4, 0(a5) since this must be in lane 0

addi a3, a3, 8
addi a5, a5, 8

add a4, a4, a1 swapped
sd a4, -8(a3) since this must be in lane 0

bne a5, a0, loop

8 instructions in 5 cycles!

44

www.Cobham.com/Gaisler

NOEL-V Current pipeline in use

Pairing when first instruction is 8-byte aligned.

loop:

ld a1, 0(a2)
addi a2, a2, 8

ld a4, 0(a5)
addi a3, a3, 8

addi a5, a5, 8
add a4, a4, a1 late ALU

sd a4, -8(a3) wait...
bne a5, a0, loop

8 instructions in 7 cycles.

45

www.Cobham.com/Gaisler

NOEL-V Current pipeline in use

Different code generation, also 8-byte aligned.

loop:

ld a4, 0(a5) swapped, paired with branch at end

ld a1, 0(a2)
addi a5, a5, 8

addi a2, a2, 8
add a4, a4, a1 late ALU

sd a4, 0(a3) wait...
addi a3, a3, 8

bne a5, a0, loop
ld a4, 0(a5)

Again, 8 instructions in 7 cycles.

46

Thanks for listening!

Shameless plug:

Looking for talent!
https://www.gaisler.com/career

