
The seL4®

Microkernel
Taking Security to the
Next Level

https://sel4.systems/

Gernot Heiser, UNSW Sydney
and seL4 Foundation

https://sel4.systems/Foundation

The Highlight of the Past Year

2RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel

08/11/2020 VeL4 iV YeriÀed on RISC-V! _ microkerneldXde

hWWpV://microkerneldXde.ZordpreVV.com/2020/06/09/Vel4-iV-YeriÀed-on-riVc-Y/ 1/4

PLFURNHUQHOGXGH
RDQGRP UDQWV DQG SRQWLÀFDWLRQV E\ GHUQRW HHLVHU

TAGS
open source, operating s\stems, risc-Y, securit\

ZL3��PZ�]LYPÄLK�VU°90:*�=�

2020/06/09
Sounds great! But Zhat does it mean?

ZL3�

seL4 (KWWSV://VHO4.V\VWHPV/) (pronounced eVV-e-ell-foXU) is
arguabl\ the Zorld·s most secure operating s\stem (OS) kernel.¬

The OS kernel is the loZest leYel of softZare running on a computer s\stem. It is the code that
e[ecutes in priYileged mode (S-mode in RISC-V; M-mode is reserYed for microcode/ÀrmZare).¬ The
kernel is ultimatel\ responsible for the securit\ of a computer s\stem.¬

seL4 is a microkernel (KWWSV://HQ.ZLNLSHGLD.RUJ/ZLNL/MLFURNHUQHO). The idea of a microkernel is to
minimise the WUXVWed compXWing baVe ² the part of the s\stem for Zhich there is no Plan B if it fails. The
Linu[and WindoZs kernels consist of tens of millions of lines of code, and contain literall\
thousands (more likel\ tens of thousands) of bugs ² a huge attack surface. A Zell-designed
microkernel, such as seL4, has about ten thousand lines ² inherentl\ more trustZorth\
(KWWSV://WV.GDWD61.FVLUR.DX/SXEOLFDWLRQV/FVLURBIXOOBWH[W//BLJJVBLHB18.SGI).

What sets seL4 aside from all other OS kernels, including other microkernels, is its YeriÀcation stor\.
It Zas the Zorld·s Àrst OS kernel Zith a machine-checked, mathematical proof of the fXncWional
coUUecWneVV of its C implementation (Zinning us a Hall of Fame AZard
(KWWSV://ZZZ.VLJRSV.RUJ/DZDUGV/KRI/) as a result). This means that it is proYed to be bug-free relatiYe
to a speciÀcation formulated in a mathematical logic. And b\ noZ it has proofs about further securit\
properties (Zhich shoZ that the speciÀcation has the right properties) and functional correctness
e[tending doZn to the binar\ code. And it has the most adYanced support for hard real-time s\stems.
And it is the Zorld·s fastest microkernel. It·s best in class b\ an\ deÀnition
(KWWSV://PLFURNHUQHOGXGH.ZRUGSUHVV.FRP/2019/08/06/10-\HDUV-VHO4-VWLOO-WKH-EHVW-VWLOO-JHWWLQJ-
EHWWHU/).

We originall\ YeriÀed seL4 for 32-bit Arm processors. We then e[tended that to 64-bit [86 processors.
And noZ to RISC-V RV64 processors. Which noZ coYers all the important ISAs.

ZL3��VU�90:*�=

Background: What is ?

seL4 is an open source, high-assurance, high-performance operating system microkernel

Piece of software that
runs at the heart of any
system and controls all
accesses to resources

World’s most comprehensive
mathematical proofs of
correctness and security

Available on GitHub
under GPLv2 license

World’s fastest
microkernel

hardware

software

critical non-critical,
untrusted

attack
s

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 3

What is ?

seL4 is the most trustworthy foundation for safety- and security-critical systems

Already in use across many domains:
automotive, aviation, space, defence, critical infrastructure,
cyber-physical systems, IoT, industry 4.0, certified security...

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 4

The Benchmark for Performance

Gernot Heiser: The seL4 Microkernel 5

Source seL4 Fisco.OC Zircon
Mi et al, 2019 986 2717 8157
Gu et al, 2020 1450 3057 8151
seL4.systems,
Nov’20

797 N/A N/A

Latency (in cycles) of a round-trip cross-address-space IPC on x64

Sources:
• Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process Communication

for Microkernels”, EuroSys, April 2020
• Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing Performance and Isolation in

Microkernels with Efficient Intra-kernel Isolation and Communication”, Usenix ATC, June 2020
• seL4 Performance, https://sel4.systems/About/Performance/, accessed 2020-11-08

Temporary performance
regression in Dec’19

World’s fastest
microkernel!

RISC-V Week, 2021-03-30

https://sel4.systems/About/Performance/

~1 month
for RISC-V

Now done
for RISC-V!

Unique Verification by Mathematical Proof

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 6

Proof Pr
oo

f

Pr
oo
f

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

seL4: Still only capability-
based OS kernel with
correctness proof!

seL4: The only OS
on RISC-V with
correctness proof

What Does This Mean?

Kinds of properties proved
• Behaviour of C code is fully captured by abstract model

• Behaviour of C code is fully captured by executable model

• Kernel never fails, behaviour is always well-defined

• assertions never fail
• will never de-reference null pointer
• will never access array out of bounds

• cannot be subverted by misformed input
• …

• All syscalls terminate, reclaiming memory is safe, ...

• Well typed references, aligned objects, kernel always mapped…

• Access control is decidable

7Gernot Heiser: The seL4 Microkernel

Can prove further
properties on
abstract level!

RISC-V Week, 2021-03-30

Pro
of?

Rewrite
Rules

Binary Code

Formalised C

Formalised
Binary

Graph
Language

Graph
Language

Verification of Binary (RISC-V in Progress)

Gernot Heiser: The seL4 Microkernel 8

Target of functional
correctness proof

Pr
oo

f

Formal
C Semantics

Proof
SMT Solver

De-
compilerPr

oo
f

Formal ISA Spec

Compiler

Pr
oo

f

C Source
• Formal spec

increases assurance
• Will eventually link to

verified hardware!

RISC-V Week, 2021-03-30

How Can I Use It?
ü Open source (GPL v2): Download from https://github.com/sel4

ü But keep in mind: seL4 is an OS microkernel and hypervisor, not an OS!

ü Many OS components available on the seL4 GitHub

Gernot Heiser: The seL4 Microkernel 9 |RISC-V Week, 2021-03-30

Native
Apps

OS
Services

Device
Drivers

Kernel
Mode

User
Mode

How Can I Use It?
ü Open source (GPL v2): Download from https://github.com/sel4

ü But keep in mind: seL4 is an OS microkernel and hypervisor, not an OS!

ü Many OS components available on the seL4 GitHub

ü Alternative: HENSOLDT Cyber’s TRENTOS

Gernot Heiser: The seL4 Microkernel 10 |RISC-V Week, 2021-03-30

Kernel
Mode

User
Mode

MiG-V: HENSOLDT-Cyber RV64 Processor (based on Ariane)

TRENTOS

Secure
Boot Crypto

SD
Driver

E/N
Driver

TCP/IPFile
System

Key
Store Loader

Logger License
Manager

Secure
Update

TLS
Stack

Supply-chain
security through
logic obfuscation

Verified!

Incremental Cyber-Retrofit: DARPA HACMS

Gernot Heiser: The seL4 Microkernel 11 |

Retrofit
existing
system!

Retrofit
existing
system!

Develop
technology

Unmanned Little Bird (ULB)

Autonomous trucks

GVR-BotOff-the-shelf
Drone airframe

RISC-V Week, 2021-03-30

ULB Architecture

Gernot Heiser: The seL4 Microkernel 12 |

Mission
Computer

Flight
Computer

N
et

w
or

k

Ground
Station

Link

Sensors

GPS

Camera

Motors

RISC-V Week, 2021-03-30

Incremental Cyber Retrofit

Gernot Heiser: The seL4 Microkernel 13 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Virt-Mach Monitor

Trusted

Mission
Mgr

GS Lk

Cam-
era

GPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Original
Mission

Computer

RISC-V Week, 2021-03-30

Original
Mission

Computer

Incremental Cyber Retrofit

Gernot Heiser: The seL4 Microkernel 14 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto

Trusted

Mission
Mgr

GS Lk

Cam-
eraGPS

Local
NW

Crypto

Linux

VMM

Linux

VMM

Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

RISC-V Week, 2021-03-30

Original
Mission

Computer

Incremental Cyber Retrofit

Gernot Heiser: The seL4 Microkernel 15 |

Trusted

Linux

Mission Manager

Ground Stn Link

Camera

GPSLocal NW

Crypto Trusted

Mission
Mngr

Comms GPS
Local
NW

Crypto

Cam-
era

Linux

VMM

[Klein et al, CACM, Oct’18]

Cyber-secure
Mission Computer

RISC-V Week, 2021-03-30

So, Why Aren’t We Done?

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 16

Proof Pr
oo

f

Pr
oo
f

Integrity

Abstract
Model

C Imple-
mentation

Confidentiality Availability

Binary code

Pr
oo

f
Pr

oo
f

Functional
Correctness

Translation
Correctness

Security
Enforcement

Still only capability-based
OS kernel with functional
correctness proof

Still the world’s
fastest microkernel!

• seL4’s verification provides the best
possible guarantee of spatial isolation

• It says nothing about temporal isolation

What’s the Issue with Temporal Isolation?

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 17

Safety: Timeliness
• Execution interference

Security: Confidentiality
• Leakage via timing channels

High Low

Observe execution speed:
Confidentiality violation

Affect execution speed:
Integrity violation –
deadline miss

Addressed by
MCS kernel
(being verified) Addressed by

time protection

Shared hardware

Cause: Competition for HW Resources

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 18

High Low

Affect execution speed

• Inter-process interference
• Competing access to micro-architectural features
• Hidden by the HW-SW contract!

Solution: Time Protection –
Eliminate interference by
preventing sharing

Time Protection: Partition all Hardware State

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 19

Cache

High Low

Flush

Temporally
partition

Cannot spatially partition on-
core caches (L1, TLB, branch
predictor, pre-fetchers)

• virtually-indexed

• OS cannot control

Spatially partition Flushing useless for
concurrent access

• HW threads

• cores

Need
both!
Need
both!

Cache

High Low

Cache

High Low

More details:
• [Heiser, FOSDEM’20]
• [Ge et al, EuroSys’19]

Temporal Partitioning: Flush on Switch

Gernot Heiser: The seL4 Microkernel

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

Latency depends
on prior execution!

Time padding
to remove

dependency

Ensure
deterministic

execution

Must remove any
history dependence!

20 |RISC-V Week, 2021-03-30

Evaluation: Prime & Probe Attack

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 21

High Low

2. Touch n cache lines

1. Fill cache with own data

2.

3. Traverse cache,

measure execution time

Trojan
encodes

Spy observes

Input signal

Output signal

Methodology: Channel Matrix

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 22

Trojan cache footprint (n)

S
py

 e
xe

cu
tio

n
tim

e
(t)

Channel matrix:
• Conditional probability of observing

output signal (t), given input (n)
• Represented as heat map:

• bright: high probability
• dark: low probability

Variation along a
horizontal line

indicates a channel

D-cache channel on x86 Haswell, no mitigation

Applying Time Protection

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 23

Trojan cache footprint (n)

S
py

 e
xe

cu
tio

n
tim

e
(t)

D-cache channel on x86 Haswell, no mitigation
D-cache channel on Haswell, time protection

Trojan cache footprint (n)

Channel

No channel

Challenge: Broken Hardware

Gernot Heiser: The seL4 Microkernel 24 |

BHB channel on x86 Sky Lake, no mitigation BHB channel on x86 Sky Lake, time protection

Small channel!

RISC-V Week, 2021-03-30

BHB channel on Arm Cortex A53, time protection

Cache sets

Challenge: Broken Hardware

Gernot Heiser: The seL4 Microkernel 25 |

BHB channel Arm Cortex A53, no mitigation

Ti
m

e
(c
yc
le
s)

Cache sets

Large channel!

Systematic study of COTS Hardware [Ge et al, APSys’18]:
• contemporary processors hold state that cannot be reset
• need a new hardware-software contract to enable real security

RISC-V Week, 2021-03-30

RISC-V To The Rescue!

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 26

New instruction fence.t: flush of all micro-
architectural state in ETH Ariane processor and
evaluated channels on FPGA implementation

BHB channel Ariane, no mitigation BHB channel Ariane, time protection

Large channel

No channel!

Similar result for all other channels
[Wistoff et all, DATE’21]

On-Going Work

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 27

Time protection
prototype

Assumes sane
(non-existent)

hardware

Prove:
no leakage

Develop usable
system model

Include fence.t in
RISC-V ISA spec

Combine with
temporal integrity (MCS)

Fix
hardware

Verify
efficacy

Make usable

Make
complete

How Can We Verify Time Protection?

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 28

Assume we have:
• hardware that implements a suitable contract,
• a formal specification of that hardware,
can we prove that our kernel eliminates all timing channels?

Proving Spatial Partitioning

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 29

High Low

TCB PT TCB PT

Cache

Cache

RAM

To prove: No two domains share hardware†

• Requires abstract model of partitionable
hardware (cache model)

• Functional property, use existing techniques

†Remaining shared
kernel data needs
separate argument

Core idea: Convert
timing channels into
storage channels!

Proving Temporal Partitioning

Gernot Heiser: The seL4 Microkernel

1. T0 = current_time()

2. Switch user context

3. Flush on-core state

4. Touch all shared data needed for return

5. while (T0+WCET < current_time()) ;

6. Reprogram timer

7. return

30 |

Prove: flush all non-partitioned HW
• Needs model of stateful HW
• Somewhat idealised on present HW

… but matches our Ariane
• Functional property

Prove: access to shared data
is deterministic
• Each access sees same

cache state
• Needs cache model
• Functional property

Prove: padding is
correct – how?

RISC-V Week, 2021-03-30

Use Minimal Abstraction of Clocks

Gernot Heiser: The seL4 Microkernel 31 |

Abstract clock = monotonically increasing counter
Operations:
• Add constant to clock value
• Compare clock values

To prove: padding loop terminates as soon as clock ≥ T0+WCET
• Functional property!

RISC-V Week, 2021-03-30

Status
ü Published analysis of hardware mechanisms (APSys’18) – Best Paper

ü Published time protection design and analysis (EuroSys’19) – Best Paper
◦ demonstrated effectiveness within limits set by hardware flaws (Arm, x86)

ü Published planned approach to verification (HotOS’19)

ü Published minimal hardware support for time protection (DATE’21) – Best Paper
◦ evaluation demonstrated efficacy and performance

Ø Working on:
◦ Integrating time-protection mechanisms with clean seL4 model
◦ Done: Rebased experimental kernel off latest seL4 mainline (x86, Arm, RISC-V)
◦ In progress: Real system model that integrates the mechanisms

◦ Proving timing-channel absence (on conforming hardware)
◦ Done: Confidentiality proofs for flushing and time padding on simplified HW model
◦ In progress: Include pre-fetching of data
◦ To do: Extend to realistic hardware model

Gernot Heiser: The seL4 Microkernel 32 |RISC-V Week, 2021-03-30

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 33

Further Reading:
• About seL4:

https://sel4.systems/
• seL4 whitepaper:

https://sel4.systems/About/seL4-whitepaper.pdf
• seL4 Foundation:

https://sel4.systems/Foundation

Defining the state of the art
in trustworthy operating systems
for over 10 years
Now proved correct on RISC-V!

Questions?

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 34

