The sel 4®
Microkernel

Taking Security to the
Next Level

‘ Gernot Heiser, UNSW Sydney
and selL4 Foundation

‘ https://sel4.systems/

https://sel4.systems/Foundation

The Highlight of the Past Year

sel 4 is verified on RISC-V!

2020/06/09
Sounds great! But what does it mean?

I

® seL4 (https://seld.systems/) (pronounced ess-e-ell-four) is
arguably the world’s most secure operating system (OS) kernel.
The OS kernel is the lowest level of software running on a computer system. It is the code that

executes in privileged mode (S-mode in RISC-V; M-mode is reserved for microcode/firmware). The
kernel is ultimately responsible for the security of a computer system.

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel

Background: What is ?

selL4 is an open source, high-assurance, high-performance operating system microkernel

Available on GitHub Wonrqlgtsh?nc::;ci(c:glm;r)cr)i?:r;ilve World’s fastest Piece of software that
under GPLv2 license P : T - runs at the heart of any
correctness and security system and controls all

accesses to resources

non-critical
' attack
-_

untrusted
oy
s &

hardware

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 3

What is ?

seL4 is the most trustworthy foundation for safety- and security-critical systems

Already in use across many domains:
automotive, aviation, space, defence, critical infrastructure,
cyber-physical systems, loT, industry 4.0, certified security...

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 4

The Benchmark for Performance

Latency (in cycles) of a round-trip cross-address-space IPC on x64

) Mi et al, 2019 986 2717 8157
World's fastest
microkernel! Gu et al, 2020 1450 3057 8151
selL4.systems, 797 N/A N/A
Nov’'20

Temporary performance

regression in Dec'19

Sources:

Zeyu Mi, Dingji Li, Zihan Yang, Xinran Wang, Haibo Chen: “SkyBridge: Fast and Secure Inter-Process Communication
for Microkernels”, EuroSys, April 2020

Jinyu Gu, Xinyue Wu, Wentai Li, Nian Liu, Zeyu Mi, Yubin Xia, Haibo Chen: “Harmonizing Performance and Isolation in
Microkernels with Efficient Intra-kernel Isolation and Communication”, Usenix ATC, June 2020

selL4 Performance, , accessed 2020-11-08

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 5

https://sel4.systems/About/Performance/

Unique Verification by Mathematical Proof

Confidentiality Availability

% Abstract
Model
Functional Now done
Correctness for RISC-V!

C Imple-
/

mentation
~1 month

for RISC-V

Security
Enforcement

selL4: Still only capability-
based OS kernel with
correctness proof!

\

Translation
Correctness

y

RISC-V Week, 2021-03-30 Gernot Heiser: The selL4 Microkernel

°FOUND/\T\ONI

selL4: The only OS
on RISC-V with
correctness proof

What Does This Mean?

Kinds of properties proved

Behaviour of C code is fully captured by abstract model Can prove further
| . properties on
Behaviour of C code is fully captured by executable model abstract levell

Kernel never fails, behaviour is always well-defined
assertions never fail
will never de-reference null pointer
will never access array out of bounds

cannot be subverted by misformed input

All syscalls terminate, reclaiming memory is safe, ...
Well typed references, aligned objects, kernel always mapped...

Access control is decidable

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 7

/\
Verification of Binary (RISC-V in Progress) o)selq

Formal
Formal spec
increases assurance

C Semantics
Formalised C
Will eventually link to

L R -t .
g hewrite verified hardware!
=% Rules

Graph
Language

Graph

Proof
Language

SMT Solver

Compiler

De-
compiler

Formal ISA Spec Formalised

Binary

Y—
(@)
(®)
—

o

Binary Code

How Can | Use It?

Open source (GPL v2): Download from https://github.com/sel4
But keep in mind: seL4 is an OS microkernel and hypervisor, not an OS!

Many OS components available on the selL4 GitHub

Native (0N Device
Apps Services Drivers

05914 Kernel
Mode

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 9 |

How Can | Use It?

Open source (GPL v2): Download from https://github.com/sel4
But keep in mind: selL4 is an OS microkernel and hypervisor, not an OS!
Many OS components available on the selL4 GitHub

Alternative: HENSOLDT Cyber's TRENTOS

TRENTOS Loager License Secure TLS
99 Manager Update Stack
Key File
Store Loader St TCP/IP
Secure SD E/N User
Boot Ehjpto Driver Driver Mode

°5d4 Kernel
Mode

Verified!

MiG-V: HENSOLDT-Cyber RV64 Processor (based on Ariane)

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 10 |

Incremental Cyber-Retrofit: DARPA HACMS

Retrofit
existing
system!

: A Autonomous truoks

.' >) \1
NP
% Develop
Off-the-shelf technology

Drone airframe \

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 11 |

ULB Architecture

\ Ground GPS ;

Station <

Link ;
Camera

<Network>

Sensors <> <+—» Motors

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 12 |

Incremental Cyber Retrofit

|

Trusted

Linux

Incremental Cyber Retrofit o)seld

Trusted

Trusted

Cam- Cam-

era Trusted _
Linux Linux | Linux
VMM GPS VMM

!
t

Linux [

Incremental Cyber Retrofit

Original
Mission
Computer

Trusted

Mission Manager
Crypto Camera

Local NW GPS

Ground Stn Link

Linux

RISC-V Week, 2021-03-30

[Klein et al, CACM, Oct'18]

Cyber-secure
Mission Computer

Trusted
Crypto Mission
Mngr
Local
NW Comms GPS

Cam-
era

Linux

VMM

Gernot Heiser: The selL4 Microkernel

15 |

So, Why Aren't We Done?

8"

Security
Enforcement

_ sel4’s verification provides the best
unctional possible guarantee of spatial isolation
orrectness * It says nothing about temporal isolation

F
Still only capability-based C
OS kernel with functional

correctness proof

ranslation

T
Correctness

Still the world’s
fastest microkernel!

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 16

What's the Issue with Temporal Isolation?

Safety: Timeliness Security: Confidentiality
 Execution interference Leakage via timing channels

Affect execution speed:
Integrity violation -
deadline miss
/ L) \
Addressed by ngh ?
MCS kernel
(being verified) m I EE——
0 4 time protection
Mbserve execution speed:

Confidentiality violation

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel 17

A
Cause: Competition for HW Resources o)selq

* Inter-process interference
» Competing access to micro-architectural features
» Hidden by the HW-SW contract!

Affect execution speed Solution: Time Protection -
Eliminate interference by
preventing sharing

A
Time Protection: Partition all Hardware State o)selq

Temporally
partition

. ‘~‘f
Spatially partition Flushing useless for
concurrent access

. HW threads

Cannot spatially partition on- * cores
core caches (L1, TLB, branch :
: More details:
predictor, pre-fetchers) . [Heiser, FOSDEM'20]
« virtually-indexed . ’
y [Ge et al, EuroSys’19] Bedliiner
* 0OS cannot control Award

Temporal Partitioning: Flush on Switch o)selq

Must remove any
history dependence!

Evaluation: Prime & Probe Attack o)selq

- ||- e

1. Fill cache with own data

Trojan
encodes

2. Touch n cache lines 2.

3. Traverse cache,

measure execution time

Spy execution time (f)

Methodology: Channel Matrix

D-cache channel on x86 Haswell, no mitigation

Variation along a
horizontal line
indicates a channel

0.01
6000

0.001
5000

0 10 20 30 40 50 60
Trojan cache footprint (n)

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel

Channel matrix:

Conditional probability of observing
output signal (t), given input (n)
Represented as heat map:

» bright: high probability

» dark: low probability

22

Spy execution time (f)

Applying Time Protection

D-cache channel on x86 Haswell, no mitigation

7000

0.01
6000

0.001
5000

0 10 20 30 40 50 60
Trojan cache footprint (n)

RISC-V Week, 2021-03-30

D-cache channel on Haswell,
128000

126000
124000
122000
120000
118000
116000

114000

0 10 20 30 40 50 60
Trojan cache footprint (n)

Gernot Heiser: The sel.4 Microkernel 23

Time (cycles)

Challenge: Broken Hardware

BHB channel on x86 Sky Lake, no mitigation BHB channel on x86 Sky Lake, time protection

RISC-V Week, 2021-03-30

Cache sets

2000
0.100000

Small channel!

1500 0.010000

0.001000
1000

0.000100
500

0.000010

Cache sets

Gernot Heiser: The seL4 Microkernel 24 |

Time (cycles)

Challenge: Broken Hardware

5IgHB channel Arm Cortex A53, no mitigation

45

40

35

30

25

20

15

10

RISC-V Week, 2021-03-30

. Systematic study of COTS Hardware [Ge et al, APSys'18]:

1100
1000

900
Large channel!
800
700

600

500

contemporary processors hold state that cannot be reset
need a new hardware-software contract to enable real security

Gernot Heiser: The seL4 Microkernel

Best Paper
Award

BHB channel on Arm Cortex A53, time protection

0.100000

0.010000

0.001000

0.000100

0.000010

25 |

RISC-V To The Rescue!

New instruction fence.t: flush of all micro- Similar result for all other channels

architectural state in ETH Ariane processor and [Wistoff et all, DATE’21]
evaluated channels on FPGA implementation Best Paper
Award
BHB channel Ariane, no mitigation BHB channel Ariane, time protection

220 490

200 480

E 1071

180- | arge channel 470

)
o
M

160
460

)
<
w

140

Time (cycles)
Probability
Time (cycles)
Probability

450

120
1074

100 440

107
80

0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16
Secret Secret

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 26

On-Going Work

Assumes sane
(non-existent)
hardware

Prove:
no leakage

Verify
efficacy

Time protection
prototype

Fix
hardware

Include fence.t in
RISC-V ISA spec

Combine with

temporal integrity (MCS)

Make
complete

Develop usable

system model
Make usable

How Can We Verify Time Protection?

Assume we have:

 hardware that implements a suitable contract,

 a formal specification of that hardware,

can we prove that our kernel eliminates all timing channels?

RISC-V Week, 2021-03-30 Gernot Heiser: The seL4 Microkernel

28

A
Proving Spatial Partitioning Q—‘il‘-|4

To prove: No two domains share hardware’

* Requires abstract model of partitionable
hardware (cache model)

» Functional property, use existing techniques

Core idea: Convert
Cache timing channels into
storage channels!

A

Proving Temporal Partitioning Q-‘T-|4

=opr el s s

T, = current_time()

Switch user context
Flush on-core state
Touch all shared data needed for return
while (TO+WCET < current_time()) ;
Reprogram timer

return

Use Minimal Abstraction of Clocks o)selq

Status

Published analysis of hardware mechanisms (APSys'18) — Best Paper

Published time protection design and analysis (EuroSys’19) — Best Paper
demonstrated effectiveness within limits set by hardware flaws (Arm, x86)

Published planned approach to verification (Hot0S'19)

Published minimal hardware support for time protection (DATE'21) — Best Paper
evaluation demonstrated efficacy and performance

Working on:
Integrating time-protection mechanisms with clean selL4 model

Done: Rebased experimental kernel off latest seL4 mainline (x86, Arm, RISC-V)
In progress: Real system model that integrates the mechanisms
Proving timing-channel absence (on conforming hardware)
Done: Confidentiality proofs for flushing and time padding on simplified HW model
In progress: Include pre-fetching of data
To do: Extend to realistic hardware model

RISC-V Week, 2021-03-30 Gernot Heiser: The sel.4 Microkernel 32 |

Defining the state of the art

in trustworthy operating systems
for over 10 years

Now proved correct on RISC-V!

Further Reading:

* About selL4:
https://sel4.systems/

» sel4 whitepaper:
https://sel4.systems/About/selL4-whitepaper.pdf

» sel4 Foundation:
https://sel4.systems/Foundation

FOUNDATION

