Preventing timing information leakages from the
microarchitecture

By Mathieu Escouteloup (Inria)
Advisors: Ronan Lashermes (Inria)
Christophe Bidan (CentraleSupélec)

Jacques Fournier (CEA-Leti)

March 30, 2020

1/19

Table of contents

@ Shared resources
© ISA contextualization

© Timing evaluation

@ Conclusion

2/19

Table of contents

@ Shared resources

3/19

Shared resources

0000

Microarchitectural sharing

o Multiple entities can request the same resource.
o Entities : hardware threads, cores, processes ...

@ Resources : cache memories, prediction tables, FSMs, buffers ...

Two kinds of sharing

o Temporal : use the same resource but at different points in time.
o Spatial : use the same resource at the same time.

@ Both can be combined.

Shared resources

[e]e] le]

The cache memory example

Thread 0 <—><—>

Core 0

Thread 1 <—><—>

L2 (<>
L3 [«

Core 1 €«>»

Data but also timing informations are

shared between the entities.

Ve

NmsIQuE

5/19

Shared resources

[e]e]e]

An implementation issue ...

Hardware | Software
view 1 view

1

1

D |
G
|

-(BRUD
RuvEv}

Back End

Front End

Scheduler

o Targeted shared resources are in the microarchitecture.

o Leakages depend on the implementation.

@ Microarchitecture cannot be controlled by the software.

... but not only!
6/19

ISA contextualization

®000000

Table of contents

© ISA contextualization

7/19

ISA contextualization

[e] Je]e]e]e]e)

A global issue

Hardware

o Which part knows the application logic ?
e Which part can efficiently make the isolation ?

e How can they exchange information ?

The whole system is concerned !

8/ 19

ISA contextualization

[e]e] Je]e]e]e)

How to modify the ISA?

Constraints :
@ Consider the whole isolation issue : temporal and spatial sharing.

@ Create custom security domains.
@ Scalability to multiple systems.
@ Preserve the architecture abstraction

Contextualization : associate a domain to each data and resource.

Req CO Ressource
Req C1 Ressource

9/19

ISA contextualization

[e]e]e] Je]ele)

Our security domain model.

New dedicated register :

o identifier : an unique number for each security domain.

New instruction : CONTEXT.SWITCH.

o Indicates a domain change.
e Some actions must be done :

@ Flush traces from the old domain.
© Split resources if needed.
@ Lock resources if needed.

@ Successful — a new domain can be safely executed.

10 /19

ISA contextualization

[e]e]e]e] Jele)

Software view.

1.
2.
3.
4.

10.
11.
12.

13.
14.
15.
16.

OLD CONTEXT
old-app:

switch-code:
csrw nextid,al # config
switch a0 # switch

NEW CONTEXT
new-app:

11/19

ctualization

Hardware view : before switch.

]
i

NLP E

;
o
;
=
i- Fetch buffer

A

Scheduler

‘BT
= i

NLP .EJHT

i Fetch buffer

Ve

brzia—

INVENTEURS 0U MONDE NUMERQUE

12/19

ISA contextualization

[e]e]e]e]e]e])

Hardware view : after switch.

Back End

Front End

]
i

+ Fetch buffer

Scheduler

i Fetch buffer

Successfully implemented in two cores, one with SMT.

Ve

V2%

INVENTEURS 0U MONDE NUMERQUE

13 /19

Timing evaluation

@000

Table of contents

© Timing evaluation

14 /19

Timing evaluation

0@00

An implementation agnostic benchmark

Goal :
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints :

o focus on timing information leakages in the design,
@ consider common shared resources,

o focus on vulnerability, not exploitability.

Scenario :

@ a trojan encodes a value in a shared resource state,
@ a spy tries to recover the value.
lrreia—~

HrIQUE

15/19

valuation

The cache example : temporal sharing

Spy value

o =~ N W A~ O N

8
7
6
5
4
3
2

01 2 383 4 5 6 7
Trojan value

(a) Unprotected L1D

Cycles

Spy value

o =MW s OO N

a o
Cycles

IS

0

1 2 3 4 5 6 7
Trojan value

(b) Protected L1D

16 /19

Timing evaluation

[e]e]e])

Other benchmarks

19 19))
7 7 120 120
. 18 . 18 H a8 H a8
. 7 . 7 100 H a7 100 H a7
s %, 8 ®, g 80 %, g 80 3,
g 4 8 3 4 g 3 g 3 8
Z 3 M- - B2 w0 Bg
& 1w & 1u° & u® & 3
2 2 “ w0
. 13 . 13 33 33
12 12 2 %2 2 32
0 0
" 1" 0 a1 0 a1
0123456 7 0123456 7 0 20 4 60 80 100 120 0 20 40 60 80 100 120
Trojan value Trojan value Trojan value Trojan value
(a) L1I (b) L1I (c) BHT (d) BHT
46 0 % , o2 7 o2
“ 4
2 6 H 10 6 10
a2 a2
E] g 2 s, P]
T 0g 3 08 g 4 8 g4 8
:] £ gz s
Fy 3 3 %5 z 8 s0 &8 60
& 8 & 3
36 36 2 2
4 4
3 s 3 ! !
o o
32 0 32 2 2
0 5 10 15 20 25 30 01234567 01234567
Trojan value Trojan value Trojan value Trojan value

(e) BTB (f)y BTB (g) Cross L1D (h) Cro

More under development ... ~

INVENTEURS 0U MONDE NUMERQUE

17/19

Table of contents

@ Conclusion

18 /19

Conclusion

@ Shared resources are sources of vulnerability.

o The ISA must be modified to give security information to the
hardware.

o Software indicates its constraints, hardware applies them.

@ A new security benchmark to evaluate the implementations.

Timesecbench : https ://gitlab.inria.fr/rlasherm/timesecbench

Ve

HrIQUE

19 /19

	Shared resources
	ISA contextualization
	Timing evaluation
	Conclusion

