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Shared resources

0000

Microarchitectural sharing

o Multiple entities can request the same resource.
o Entities : hardware threads, cores, processes ...

@ Resources : cache memories, prediction tables, FSMs, buffers ...

Two kinds of sharing

o Temporal : use the same resource but at different points in time.
o Spatial : use the same resource at the same time.

@ Both can be combined.



Shared resources
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The cache memory example
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Shared resources
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An implementation issue ...
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o Targeted shared resources are in the microarchitecture.

o Leakages depend on the implementation.

@ Microarchitecture cannot be controlled by the software.

... but not only!
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ISA contextualization
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A global issue

Hardware

o Which part knows the application logic ?
e Which part can efficiently make the isolation ?

e How can they exchange information ?

The whole system is concerned !
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ISA contextualization
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How to modify the ISA?

Constraints :
@ Consider the whole isolation issue : temporal and spatial sharing.

@ Create custom security domains.
@ Scalability to multiple systems.
@ Preserve the architecture abstraction

Contextualization : associate a domain to each data and resource.

Req CO Ressource
Req C1 Ressource
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ISA contextualization
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Our security domain model.

New dedicated register :

o identifier : an unique number for each security domain.

New instruction : CONTEXT.SWITCH.

o Indicates a domain change.
e Some actions must be done :

@ Flush traces from the old domain.
© Split resources if needed.
@ Lock resources if needed.

@ Successful — a new domain can be safely executed.
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ISA contextualization
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Software view.
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# OLD CONTEXT
old-app:

switch-code:
csrw nextid,al # config
switch a0 # switch

# NEW CONTEXT
new-app:
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ctualization

Hardware view : before switch.
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ISA contextualization
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Hardware view : after switch.
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Successfully implemented in two cores, one with SMT.
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Timing evaluation
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Timing evaluation
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An implementation agnostic benchmark

Goal :
to quantitatively evaluate information leakages in the
microarchitecture.

Constraints :

o focus on timing information leakages in the design,
@ consider common shared resources,

o focus on vulnerability, not exploitability.

Scenario :

@ a trojan encodes a value in a shared resource state,
@ a spy tries to recover the value.
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valuation

The cache example : temporal sharing
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Timing evaluation
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Other benchmarks
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Conclusion

@ Shared resources are sources of vulnerability.

o The ISA must be modified to give security information to the
hardware.

o Software indicates its constraints, hardware applies them.

@ A new security benchmark to evaluate the implementations.

Timesecbench : https ://gitlab.inria.fr/rlasherm/timesecbench
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