
1

Copyright © 2021 Rishiyur S. Nikhil

An Introduction to the Official Formal Specification
of the RISC-V Instruction Set Architecture

Rishiyur S. Nikhil, PhD 1

CTO and co-founder, Bluespec, Inc.
(nikhil@bluespec.com)

3rd RISC-V Meeting, March 30-31, 2021, France

1 Chaired the RISC-V Foundation’s Technical Committee that selected/developed the ISA Formal Spec

2

Copyright © 2021 Rishiyur S. Nikhil

● The RISC-V ISA Formal Spec is intended to be the official and definitive specification of the
RISC-V ISA (Instruction Set Architecture)

● I.e., it is the “ultimate truth” against which the (functional) correctness of all implementations
should be measured
● Hardware implementations
● Simulators and emulators
● Compilers

Introduction

Disclaimer: These are not official positions of RISC-V International Association.
Any inaccuracies here are solely the responsibility of the speaker.

3

Copyright © 2021 Rishiyur S. Nikhil

● It is a description of each instruction, written in a formal language (not English prose)
● Describes:

● Architectural machine state
● Bit encoding of instructions
● The “meaning” of each opcode, i.e., “what does this instruction do?”
● (Nice to have:) An assembly syntax
● All the different allowed parameterizations

● All the different allowed non-deteriminisms
● Including, in particular, interactions with RISC-V Weak Memory Models

● We also want the formal language to have these properties:
● Have simple unambiguous semantics (so that instruction semantics are clear)
● Be easily machine readable and manipulable (so we can connect to formal tools, perform formal

analyses and transformations, etc.)
● Be executable (so we can use the formal spec directly as a “correct” simulator)

● Be approachable and understandable every day by working engineers

What is an “ISA Formal Spec”?

A RISC-V ISA simulator written in C/C++ would satisfy some, but not all of these requirements.

4

Copyright © 2021 Rishiyur S. Nikhil

The RISC-V ISA Formal Spec is written in Sail 1

● Developed by Prof. Peter Sewell’s group at U.Cambridge, UK
● Sail is purpose-designed to describe ISAs

● Has also been used to describe ISAs of ARM, MIPS, parts of PowerPC and x86
● Has been deliberately designed to be similar to traditional ISA specs (written with English

prose and sometimes also with pseudo-code), with great effort to make it familiar to and
easily usable by working engineers:
● All aspects of an instruction (bit encoding, fields, execution semantics, assembly syntax)

are in a textually contiguous group
● The Sail implementation (i.e., code that processes Sail code) is written in OCaml

● Back-ends produce simulators in C and OCaml
● Back-ends connect to other formal tools: Coq, Isabelle, HOL4

● Public repository for Sail: https://github.com/rems-project/sail

1 Sail is just a name, not an acronym

5

Copyright © 2021 Rishiyur S. Nikhil

Example: Sail spec for LUI and AUIPC instructions

The LUI (“Load Upper Immediate”) and AUIPC (“Add Upper Immediate to PC”) instructions have the “U-type”
encoding format. The two instructions are distinguished by the 7-bit “opcode” field. The 20-bit immediate
value is loaded (LUI) or added to the current PC and loaded (AUIPC) into the destination register (named
with a 5-bit index “rd”) after suitable alignment, sign-extension, etc.

The text spec document for the RISC-V ISA shows that RISC-V instructions are encoded in a few formats:

6

Copyright © 2021 Rishiyur S. Nikhil

Example: Sail spec for LUI and AUIPC instructions: encoding

enum uop = {RISCV_LUI, RISCV_AUIPC}
union clause ast = UTYPE : (bits(20), regidx, uop)

mapping encdec_uop : uop <-> bits(7) = { RISCV_LUI <-> 0b0110111,
 RISCV_AUIPC <-> 0b0010111 }

The Sail code first defines an AST (Abstract Syntax Tree) for the U-type format:

Then, a bit-encoding for the 7-bit ‘opcode’ part of the instruction:

mapping clause encdec = UTYPE(imm, rd, op) <-> imm @ rd @ encdec_uop(op)

Then, the bit-encoding for whole instruction:

The bit representationThe AST

bit-concatenation

Declared elsewhere as bits(5)

7

Copyright © 2021 Rishiyur S. Nikhil

Example: Sail spec LUI and AUIPC: execution semantics

function clause execute UTYPE(imm, rd, op) = {
 let off : xlenbits = EXTS(imm @ 0x000);
 let ret : xlenbits = match op {
 RISCV_LUI => off,
 RISCV_AUIPC => get_arch_pc() + off };
 X(rd) = ret;
 RETIRE_SUCCESS
}

The execution semantics is defined by a function on the AST (on a global architectural state):

Here the specs for LUI and AUIPC are given together since they share much structure,
but this is a stylistic choice based on readability; they can be given individually.

Sign-extension operator
(to XLEN width)

Pattern-matchingRegister-write Declaring type of
a local variable

Other types of instructions
may have exceptions (traps)

Pattern-matching
(this clause of ‘execute’ only applies on UTYPE ASTs)

8

Copyright © 2021 Rishiyur S. Nikhil

Example: Sail spec LUI and AUIPC: assembly syntax

mapping utype_mnemonic : uop <-> string = { RISCV_LUI <-> "lui",
 RISCV_AUIPC <-> "auipc" }

mapping clause assembly =
 UTYPE(imm, rd, op)
 <-> utype_mnemonic(op) ^ spc() ^ reg_name(rd) ^ sep() ^ hex_bits_20(imm)

The assembly syntax is defined by a mapping between the ASTs and strings:

string space

String concatenation

string separator
(e.g., comma)

String
AST

9

Copyright © 2021 Rishiyur S. Nikhil

Sail: “Scattered” definitions

In most programming languages, a data type declaration must contain all its “clauses”:

union ast = UTYPE : (bits(20), regidx, uop)
 | BTYPE : (bits(13), regidx, regidx, bop)
 | ...

Similarly, functions and mappings can also be “scattered”.

Thus, the program text can group together the clauses for each
opcode, so the spec is organized just like a traditional ISA spec,
with all aspects of each opcode grouped into its own section.

In Sail, the clauses can be “scattered” across the program text:

union scattered ast

union scattered ast = UTYPE : (bits(20), regidx, uop)

union scattered ast = BTYPE : (bits(13), regidx, regidx, bop)

LUI, AUIPC

 ast spec
 encdec spec
 execute spec
 assembly spec

BEQ, BNE, BLT,
BGE, BLTU, BGEU

 ast spec
 encdec spec
 execute spec
 assembly spec

10

Copyright © 2021 Rishiyur S. Nikhil

Adding new instructions (e.g., custom instructions)

This “all aspects of an instruction together” makes it easy to add new instructions

as new Sail code without disturbing Sail code for existing instructions.

Existing instruction code can be used as an “example” or “template” for adding new instructions.

LUI, AUIPC

 ast spec
 encdec spec
 execute spec
 assembly spec

BEQ, BNE, BLT,
BGE, BLTU, BGEU

 ast spec
 encdec spec
 execute spec
 assembly spec

11

Copyright © 2021 Rishiyur S. Nikhil

Sail: Types and Type-checking

Sail is a strongly typed, statically type-checked language
● Types include

● enums (e.g., enum bop = {BEQ, BNE, BLT, BGE, BLTU, BGEU})
● algebraic types (like UTYPE and BTYPE, shown earlier)

● (algebraic types are also known as “tagged unions”)
● tuples (like the 3-tuple component of a UTYPE, shown earlier)
● bit-vectors (like bits(20), shown earlier)

● bit-vector sizes are part of the type, and are type-checked: it is impossible to
accidentally pass a bit-vector of the wrong size

● functions, and so on
● Types can be polymorphic (e.g., a function operating on different bit-vectors of different sizes)

12

Copyright © 2021 Rishiyur S. Nikhil

A more complex example: Sail ‘execute’ spec for LOAD (1)

function clause execute(LOAD(imm, rs1, rd, is_unsigned, width, aq, rl)) = {
 let offset : xlenbits = EXTS(imm);
 match ext_data_get_addr(rs1, offset, Read(Data), width) {
 Ext_DataAddr_Error(e) => { ext_handle_data_check_error(e); RETIRE_FAIL },
 Ext_DataAddr_OK(vaddr) =>
… (continued) …

The LOAD group of instructions encompass:
● an rs1 source register for the address, and a 12-bit immediate offset to the address
● an rd destination register for the loaded value
● different sizes: byte (8b), halfword (16b), word (32b), doubleword (64b)
● whether the loaded value should be zero- or sign-extended into rd
● “acquire” and “release” annotations (for weak-memory models)

Sign-extend
12b offset

Compute address
to be loaded Pattern-match on whether addr computation

failed or succeeded with (virtual) address vaddr

Trap actions

Argument indicating this is a ‘read’ to
‘data memory’ (not instruction mem)

13

Copyright © 2021 Rishiyur S. Nikhil

A more complex example: Sail ‘execute’ spec for LOAD (2)

… (continuing) …
 if check_misaligned(vaddr, width)
 then { handle_mem_exception(vaddr, E_Load_Addr_Align()); RETIRE_FAIL }
 else match translateAddr(vaddr, Read(Data)) {
… (continued) …

The spec can be configured to model traps
on misaligned addresses

Compute the physical address from the
virtual address (if virtual memory is currently active).

The function also models TLBs (Translation-Lookaside Buffers)
because these are potentially architecturally visible,
needing the SFENCE.VMA instruction.

Trap actions

14

Copyright © 2021 Rishiyur S. Nikhil

A more complex example: Sail ‘execute’ spec for LOAD (3)

… (continuing) …
 else match translateAddr(vaddr, Read(Data)) {
 TR_Failure(e, _) => { handle_mem_exception(vaddr, e); RETIRE_FAIL },
 TR_Address(addr, _) =>
 match (width, sizeof(xlen)) {
 (BYTE, _) =>
 process_load(rd, vaddr,
 mem_read(Read(Data), addr, 1, aq, rl, false),
 is_unsigned),
 (HALF, _) =>
 process_load(rd, vaddr,
 mem_read(Read(Data), addr, 2, aq, rl, false),
 is_unsigned),
 … (and so on for WORD and DWORD) …

Do the actual read from the memory model

Virtual-to-physical
translation can fail

Physical address

Move memory value into register rd

15

Copyright © 2021 Rishiyur S. Nikhil

Configuration options (“implementation-defined”)

RISC-V permits a number of “implementation-defined” options:
● In the unprivileged ISA. Examples:

● RV32I vs. RV64I
● Each of the optional extensions: M (integer multiply/divide), A (atomics), FD (single-and-double-

precision floating point), C (compressed), … and more in the future
● Whether or not a LOAD/STORE traps if the address is misaligned

● And many more in the privileged ISA: Examples:
● Many CSRs (Control and Status Registers) have “write-any, read-legal” (WARL) fields.

An implementation can define how an illegal write-value is transformed into a legal read-value.
● A (“accessed”) and D (“dirty”) bits in a PTE (Page Table Entry) can be maintained in the implementation

or raise a trap.

The Sail spec is easy to configure for a specific set of choices, at the moment with some editing of Sail
source files.

A more systematic way of specifying all officially-allowed implementation choices, and automatically
incorporating this into the Sail spec, is under development.

16

Copyright © 2021 Rishiyur S. Nikhil

From individual instructions to programs (sequences of instructions)

● Sequential semantics is easy (and is adequate for many uses).
● Concurrent semantics (modeling concurrency of pipelines, superscalarity, out-of-order, speculation, multi-

harts (Hardware Threads) etc. is more complex and subtle because of Weak Memory Models, which allow
certain kinds of non-determinism to become visible in the semantics.

17

Copyright © 2021 Rishiyur S. Nikhil

Sequential semantics (simple) → sequential simulator

To create a simple one-instruction-at-a-time sequential simulator from the formal spec, we simply
write a Sail top-level fetch-execute loop that invokes per-instruction semantic functions.

18

Copyright © 2021 Rishiyur S. Nikhil

Concurrent semantics and Weak Memory Models
Implementations have various kinds of concurrency: pipelineing, speculation, superscalarity, out-of-order
execution, and multi-harts (multi-thread, multi-core; hart = “hardware thread”).

With instruction concurrency and weak memory models, we can no longer treat each instruction execution as
an atomic action (as in the simple sequential semantics).

Execution of an instruction involves a series of events,
and the events of concurrent instructions can interleave,
exposing non-deterministic behavior.

(Hence the need for instructions like FENCE, FENCE.I, SFENCE.VMA)

19

Copyright © 2021 Rishiyur S. Nikhil

Instruction concurrency and Weak Memory Models
The Sail formal spec can be used to model the full range of allowed non-determinisms.
● The semantics are written in terms of an “API” for basic actions, such as reading/writing a register, address

calculation, reading/writing from memory, etc.
● For sequential semantics, these are implemented in the natural, intuitive way.
● For concurrent semantics, these can also announce/record the “events” during an instruction’s execution.
● An alternative top-level can interleave events from concurrent instructions.

The Sail project includes the REM concurrency tool which has been used to specify the RISC-V Weak Memory
Model(s), and which can interact with the instruction semantics.

20

Copyright © 2021 Rishiyur S. Nikhil

Using the RISC-V ISA Formal Spec

There are many ways to use the ISA Formal Spec
● It is ready for some uses now, in everyday activities
● Some are more researchy, but open the door for future formal assurance about designs (correctness,

security, ...)

21

Copyright © 2021 Rishiyur S. Nikhil

Use-case: As an everyday document to consult

● I hope this will be the most common use-case for the ISA Formal Spec.
● Every engineer who works with RISC-V (hardware CPU designer, hardware CPU verification

engineer, compiler writer targeting RISC-V, simulator writer, …) should
● Bookmark the Formal Spec link in their browser
● Consult the Formal Spec to clarify any doubts about any RISC-V instruction

● Anyone teaching the RISC-V ISA, and anyone learning the RISC-V ISA, should use the
Formal Spec as an integral part of their activity.

In other words, people should use the Formal Spec as often and naturally
as a traditional text ISA spec.

22

Copyright © 2021 Rishiyur S. Nikhil

Use-case: “Golden Reference” for Compliance Suite
● This may be the next most common use-case for the ISA Formal Spec.
● Before a commercial implementation can claim that it “is a RISC-V implementation”, it must

pass the RISC-V Compliance Suite.

In general, the ISA Formal Spec
simulator can be seen as a “golden
reference model” during verification
of functional correctness of any
RISC-V implementation.

23

Copyright © 2021 Rishiyur S. Nikhil

Use-case: “Tandem Verification”

Tandem Verification uses the ISA Formal Spec as a golden reference in a more fine-grain
(instruction-by-instruction) manner, so that faulty behavior can be pinpointed precisely.

24

Copyright © 2021 Rishiyur S. Nikhil

Use-cases: Formal proofs of correctness/equivalence

Several research groups are pursuing these ideas.

25

Copyright © 2021 Rishiyur S. Nikhil

RISC-V ISA Formal Spec: Status and Plans
The Formal Spec currently covers:
● Unprivileged RV32I, RV64I
● Extensions M (int mult/div), A (atomics) FD (single-, double-precision float), C (compressed)

● FD currently use capture all RISC-V-specific aspects (floating point registers, CSRs, load/store) but invoke Berkeley “Softfloat” for
actual computation; this should change in future

● Privileged spec with M, S and U privileges, Sv32, Sv39 and Sv48 virtual memory

The simulator has been used to boot Linux, FreeBSD, Sel4, FreeRTOS.

The generated simulator via C is fast enough to boot Linux/FreeBSD in a few seconds/minutes.

Ongoing work to improve accessibility:
● Integration in-line with existing unprivileged and privileged text spec documents
● General documentation, tutorials, outreach

Ongoing work:
● Integration with RISC-V Compliance Suite
● Formalization of “implementation choices”
● Every new ISA extension will require an extension to the ISA Formal Spec

Please feel free to join in!

26

Copyright © 2021 Rishiyur S. Nikhil

The ecosystem around the RISC-V ISA Formal Spec and Sail

Many ISAs have been
coded in Sail

The Sail implementation
has many back-ends to
produce simulators (in C
and OCaml) and to
connect to other formal
tools

(picture from: https://github.com/rems-project/sail)

https://github.com/rems-project/sail

27

Copyright © 2021 Rishiyur S. Nikhil

Thank you!

Questions?

Useful links:

● https://github.com/rems-project/sail-riscv
The actual RISC-V ISA Formal Spec, written in Sail

● https://github.com/rsnikhil/RISCV_ISA_Spec_Tour
These slides; longer 3-hour introduction and reading-tour of the actual spec code;
instructions on how to download and build an executable version of the spec; how to execute
the spec on the RISC-V Compliance Suite

● https://github.com/riscv/riscv-compliance
The official RISC-V “ISA Compliance Suite” (in development)

For those interested in Sail itself, and its compiler (written in Ocaml) to C, Ocaml, Coq, ...
● https://github.com/rems-project/sail

https://github.com/rems-project/sail-riscv
https://github.com/rsnikhil/RISCV_ISA_Spec_Tour
https://github.com/riscv/riscv-compliance
https://github.com/rems-project/sail

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

