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Why Java on RISC-V?

• Second on the TIOBE index (> 10%)
• Platform independent
• High-level, developer-friendly, managed
• Pervasive

− From IoT/SoC to high-end server applications



State of other JVM RISC-V ports

• OpenJDK Zero – only interpreter
• JikesRVM – not publicly available port 
• OpenJ9 – port effort ongoing; not full JIT compilation yet
• OpenJDK11 – Initial port from Huawei
• MaxineVM – First implementation to support full JIT compilation 

and wide benchmark coverage



MaxineVM History

• Project started in 2005 at Sun Microsystems
• Through the years, the MaxineVM compiler branched out and

transformed to the Graal compiler
• Since 2017, the University of Manchester continues the 

development of MaxineVM
- https://github.com/beehive-lab/Maxine-VM

https://github.com/beehive-lab/Maxine-VM


MaxineVM Characteristics

• Metacircular VM – VM for Java written in Java
• Mainly used for research and not production

- Easy to change and experiment
- ~2x slower than production quality JVMs 

• Multiple plug-and-play “schemes”
- HeapScheme, LockScheme, ObjectLayoutScheme, etc.

• Compilers, GCs
- T1X: Template interpreter
- C1X: Optimizing compiler (based on HotSpot’s C1 compiler)
- SemiSpace and Generational GCs



MaxineVM on RISC-V

What had to be accomplished to run Maxine on RISC-V?

• Implement the RISC-V ISA instructions encodings used by the compilers in the VM 
assembler

• All RISC-V extensions which provide ISA instructions from spec v2.2 were used except:
- V Vector Operations, P Packed SIMD, C Compressed Instructions, Q Quad Precision

• Port to RISC-V
- T1X and C1X compilers
- Adapters – make the transition between two calling conventions in use by the 

compilers
- Stubs – hand crafted assembly that cannot be expressed as Java
- Substrate – underlying C code which covers VM boot up, endianness, signal handlers

registration, etc



MaxineVM on RISC-V

How the port was done?
• Testing infrastructure in place; allows for offline compiler testing



MaxineVM on RISC-V

Benchmarks
• Fedora 31 on top of Qemu

• SPECjvm2008 → 79% pass rate

• DaCapo → 60% pass rate

• Comparison against OpenJDK Zero



Results – SpecJVM2008
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Results – Dacapo
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Ongoing Research
• MaxineVM is part of the Beehive ecosystem [1]

• https://github.com/beehive-lab
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RISC-V

- Safe code modification on architectures without HW support for SMC [2]
- Type-information elimination on archs with tagged pointers [3]
- Hardware acceleration of managed languages on GPUs and FPGAs [4, 5]
- Systems for co-simulation of managed applications [6]
- Memory characterization of managed languages on NUMA archs [7]

“Provide an extensible state-of-
the-art infrastructure for hw/sw

co-design research”

https://github.com/beehive-lab
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Thank you!


