
Christos Kotselidis

Associate Professor at The University of Manchester

Senior Architect at KTM Innovation

MaxineVM
Enabling HW/SW Co-design of managed languages on RISC-V



Why Java on RISC-V?

• Second on the TIOBE index (> 10%)
• Platform independent
• High-level, developer-friendly, managed
• Pervasive

− From IoT/SoC to high-end server applications



State of other JVM RISC-V ports

• OpenJDK Zero – only interpreter
• JikesRVM – not publicly available port 
• OpenJ9 – port effort ongoing; not full JIT compilation yet
• OpenJDK11 – Initial port from Huawei
• MaxineVM – First implementation to support full JIT compilation 

and wide benchmark coverage



MaxineVM History

• Project started in 2005 at Sun Microsystems
• Through the years, the MaxineVM compiler branched out and

transformed to the Graal compiler
• Since 2017, the University of Manchester continues the 

development of MaxineVM
- https://github.com/beehive-lab/Maxine-VM

https://github.com/beehive-lab/Maxine-VM


MaxineVM Characteristics

• Metacircular VM – VM for Java written in Java
• Mainly used for research and not production

- Easy to change and experiment
- ~2x slower than production quality JVMs 

• Multiple plug-and-play “schemes”
- HeapScheme, LockScheme, ObjectLayoutScheme, etc.

• Compilers, GCs
- T1X: Template interpreter
- C1X: Optimizing compiler (based on HotSpot’s C1 compiler)
- SemiSpace and Generational GCs



MaxineVM on RISC-V

What had to be accomplished to run Maxine on RISC-V?

• Implement the RISC-V ISA instructions encodings used by the compilers in the VM 
assembler

• All RISC-V extensions which provide ISA instructions from spec v2.2 were used except:
- V Vector Operations, P Packed SIMD, C Compressed Instructions, Q Quad Precision

• Port to RISC-V
- T1X and C1X compilers
- Adapters – make the transition between two calling conventions in use by the 

compilers
- Stubs – hand crafted assembly that cannot be expressed as Java
- Substrate – underlying C code which covers VM boot up, endianness, signal handlers

registration, etc



MaxineVM on RISC-V

How the port was done?
• Testing infrastructure in place; allows for offline compiler testing



MaxineVM on RISC-V

Benchmarks
• Fedora 31 on top of Qemu

• SPECjvm2008 → 79% pass rate

• DaCapo → 60% pass rate

• Comparison against OpenJDK Zero



Results – SpecJVM2008

0.04 0.06
0.15

0.23
0.06

0.14

1.74

3.61

0.82
0.93

0.39

1.17

compress crypto derby scimark serial xml
0

0.5

1

1.5

2

2.5

3

3.5

4

benchmark

op
s/
m

OpenJDK Zero

Maxine



Results – Dacapo

13.4

1.5

10.79

0.75
4.64 3.43

9.54
5.16

0

39.58

3.56

58.2

7.42

28.06

9.07

134.58

30.51

0

avrora fop jython luindex lusearch pmd sunflow xalan Mean
0

20

40

60

80

100

120

140

160

benchmark

m
in
ut
es

Maxine

OpenJDK Zero



Ongoing Research
• MaxineVM is part of the Beehive ecosystem [1]

• https://github.com/beehive-lab

Heterogeneous Architectures

Aarch64

ARMv7

x86

GPUS FPGAs

VPUs ASICs

Resiliency

Simulators Emulated 
Architectures

MAMBO
Dynamic 
Binary

Translator

MaxSim/Zsim

C
om

pu
te

 P
la

tfo
rm

Maxine VM

T1X

TornadoVM
Hardware Acceleration

Operating System 

Traditional Benchmarking 
(SpecJVM, Dacapo, etc.)

Computer Vision 
SLAM Applications

Big Data 
Applications 
(Spark, Flink, 
Hadoop, etc.)DSLs (LLVM IR, etc.)

Performance

Pow
er

Se
cu

rit
y

Services and Drivers
 (PIN, MAMBO, MAMBO-X64)

ISA extensions

A
pp

lic
at

io
ns

R
un

tim
e 

La
ye

r

Scripting and Dynamic 
Languanges

(Ruby, Scala, R, etc.)

OpenJDK HotSpot
Truffle
Graal

Virtualization (KVM)

C1
MMTk G1, ParallelGC, etc.

VoltspotMachine Learning
(FEAST, KNN, SVM)

GEM5 
Full System Simulator

HotspotNVSimMcPATCacti

MAST
FPGA Accelerator

Framework

Fault Injection

RISC-V

- Safe code modification on architectures without HW support for SMC [2]
- Type-information elimination on archs with tagged pointers [3]
- Hardware acceleration of managed languages on GPUs and FPGAs [4, 5]
- Systems for co-simulation of managed applications [6]
- Memory characterization of managed languages on NUMA archs [7]

“Provide an extensible state-of-
the-art infrastructure for hw/sw

co-design research”

https://github.com/beehive-lab


References

[1] C. Kotselidis, et al., “Project Beehive: A HW/SW co-designed stack for runtime and architectural research”, https://arxiv.org/abs/1509.04085
[2] T. Hartley, et al., “An Analysis of Call-Site Patching without Strong Hardware Support for Self-Modifying-Code”, In MPLR 2019
[3] A. Rodchenko, et al., “Type Information Elimination from Objects on Architectures with Tagged Pointers Support”, In IEEE TOC 2018
[4] J. Clarkson, et al, “Exploiting High-Performance Heterogeneous Hardware for Java Programs using Graal”, In ManLang 2018
[5] C. Kotselidis, et al., “Heterogeneous managed runtime systems: A computer vision case study”, In VEE 2017
[6] A. Rodchenko, et al., “MaxSim: A Simulation Platform for Managed Applications”, In ISPASS 2017
[7] O. Papadakis, et al., “You can’t hide you can’t run: a performance assessment of managed applications on a NUMA machine”, In MPLR 2020

https://arxiv.org/abs/1509.04085


Thank you!


