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Why Java on RISC-V?

* Second on the TIOBE index (> 10%)
* Platform independent

* High-level, developer-triendly, managed

* Pervasive
- From loT/SoC to high-end server applications




State of other JVM RISC-V ports

* OpendDK Zero - only interpreter

* JikesRVM - not publicly available port

* Opend9 - port effort ongoing; not full JIT compilation yet
e OpendDK11 - Initial port from Huawei

* MaxineVM - First implementation to support full JIT compilation
and wide benchmark coverage



MaxineVM History

* Project started in 2005 at Sun Microsystems

* Through the years, the MaxineVM compiler branched out and
transformed to the Graal compiler

* Since 2017, the University of Manchester continues the

development of MaxineVM
- https://github.com/beehive-lab/Maxine-VM



https://github.com/beehive-lab/Maxine-VM

MaxineVM Characteristics

e Metacircular VM - VM for Java written in Java

* Mainly used for research and not production

- Easy to change and experiment
- ~2x slower than production quality JVMs

* Multiple plug-and-play “schemes”

- HeapScheme, LockScheme, ObjectLayoutScheme, etc.

* Compilers, GCs

- T1X: Template interpreter
- C1X: Optimizing compiler (based on HotSpot's C1 compiler)

- SemiSpace and Generational GCs



MaxineVM on RISC-V

What had to be accomplished to run Maxine on RISC-V?

Implement the RISC-V ISA instructions encodings used by the compilers in the VM
assembler
All RISC-V extensions which provide ISA instructions from spec v2.2 were used except:
-V Vector Operations, P Packed SIMD, C Compressed Instructions, Q Quad Precision
Port to RISC-V
- T1Xand C1X compilers

- Adapters - make the transition between two calling conventions in use by the
compilers

- Stubs - hand crafted assembly that cannot be expressed as Java

- Substrate - underlying C code which covers VM boot up, endianness, signal handlers
registration, etc



MaxineVM on RISC-V

How the port was done?
« Testing infrastructure in place; allows for offline compiler testing

JUNIT Testing Framework

Maxine VM

Initialize
Maxine Tester (1)
rieve Code Buffer (2)

Return Code Buffer with
Assembly Instructions (3)

Cross-ISA Debugging in Meta-circular VMs

Create and Run Emulated Test (4)

Christos Kotselidis Andy Nisbet
Create binary test for QEMU emulation The University of Manchester The University of Manchester
Initialize with expected 1/0 values Manchester, United Kingdom Manchester, United Kingdom
christos.kotselidis@manchester.ac.uk andy.nisbet@manchester.ac.uk
(startup.o | asm_entry.0): arm-none-eabi-as
Create C Code Buffer by injecting the Foivos S. Zakkak Nikos Foutris
assembly generated by the unit tests. The University of Manchester The University of Manchester
X eReC Ao bt Manchester, United Kingdom Manchester, United Kingdom
c°mpi}:ﬁﬁ$x:£;°z}f:£:u§a:z poin foivos.zakkak@manchester.ac.uk nikos.foutris@manchester.ac.uk
(test.c): arm-none-eabi-gcc
Abstract ACM Reference Format:

Link test.o, startup.o, asm_entry.o
(test.elf): arm-none-eabi-ld

Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, and Nikos
Foutris. 2017. Cross-ISA Debugging in Meta-circular VMs. In Pro-

ion S . . .. B
I".s““cn:l”; b ! Ar‘cmtﬁﬂc.t“tr e;de?taqs ﬁ%’&cmﬁ’mgﬁ" ceedings of ACM SIGPLAN International Workshop on Virtual Ma-
ming and debugging etfort. Meta-circ $ add another chines and Intermediate Languages (VMIL’17). ACM, New York, NY,

level of complexity towards this aim since they have to com- USA, 9 pages. https://doi.org/10.1145/3141871.3141872
pile themselves with the same compiler that is being ex-

Extending current Virtual Machine implementations to new

Create test binary
(test.bin): arm-none-eabi-objcopy

Run QEMU with test.bin
qemu-system-arm-cpu cortex-al5 -m 128M -s -5 -kernel test.bin

Save output register file for validation
Validate output register values with expected ones
Return PASS/FAIL to MaxineTester



MaxineVM on RISC-V

Benchmarks

* Fedora 31 on top of Qemu
* SPECjvm2008 — 79% pass rate
* DaCapo — 60% pass rate

« Comparison against OpenJDK Zero
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Results - Dacapo
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Ongoing Research

Performance

* MaxineVM is part of the Beehive ecosystem [1] 4
e https://github.com/beehive-lab
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