MaxineVM
Enabling HW/SW Co-design of managed languages on RISC-V

Christos Kotselidis
Associate Professor at The University of Manchester

Senior Architect at KTM Innovation

MANCHESTER
1824

The University of Manchester

Why Java on RISC-V?

* Second on the TIOBE index (> 10%)
* Platform independent

* High-level, developer-triendly, managed

* Pervasive
- From loT/SoC to high-end server applications

State of other JVM RISC-V ports

* OpendDK Zero - only interpreter

* JikesRVM - not publicly available port

* Opend9 - port effort ongoing; not full JIT compilation yet
e OpendDK11 - Initial port from Huawei

* MaxineVM - First implementation to support full JIT compilation
and wide benchmark coverage

MaxineVM History

* Project started in 2005 at Sun Microsystems

* Through the years, the MaxineVM compiler branched out and
transformed to the Graal compiler

* Since 2017, the University of Manchester continues the

development of MaxineVM
- https://github.com/beehive-lab/Maxine-VM

https://github.com/beehive-lab/Maxine-VM

MaxineVM Characteristics

e Metacircular VM - VM for Java written in Java

* Mainly used for research and not production

- Easy to change and experiment
- ~2x slower than production quality JVMs

* Multiple plug-and-play “schemes”

- HeapScheme, LockScheme, ObjectLayoutScheme, etc.

* Compilers, GCs

- T1X: Template interpreter
- C1X: Optimizing compiler (based on HotSpot's C1 compiler)

- SemiSpace and Generational GCs

MaxineVM on RISC-V

What had to be accomplished to run Maxine on RISC-V?

Implement the RISC-V ISA instructions encodings used by the compilers in the VM
assembler
All RISC-V extensions which provide ISA instructions from spec v2.2 were used except:
-V Vector Operations, P Packed SIMD, C Compressed Instructions, Q Quad Precision
Port to RISC-V
- T1Xand C1X compilers

- Adapters - make the transition between two calling conventions in use by the
compilers

- Stubs - hand crafted assembly that cannot be expressed as Java

- Substrate - underlying C code which covers VM boot up, endianness, signal handlers
registration, etc

MaxineVM on RISC-V

How the port was done?
« Testing infrastructure in place; allows for offline compiler testing

JUNIT Testing Framework

Maxine VM

Initialize
Maxine Tester (1)
rieve Code Buffer (2)

Return Code Buffer with
Assembly Instructions (3)

Cross-ISA Debugging in Meta-circular VMs

Create and Run Emulated Test (4)

Christos Kotselidis Andy Nisbet
Create binary test for QEMU emulation The University of Manchester The University of Manchester
Initialize with expected 1/0 values Manchester, United Kingdom Manchester, United Kingdom
christos.kotselidis@manchester.ac.uk andy.nisbet@manchester.ac.uk
(startup.o | asm_entry.0): arm-none-eabi-as
Create C Code Buffer by injecting the Foivos S. Zakkak Nikos Foutris
assembly generated by the unit tests. The University of Manchester The University of Manchester
X eReC Ao bt Manchester, United Kingdom Manchester, United Kingdom
c°mpi}:ﬁﬁ$x:£;°z}f:£:u§a:z poin foivos.zakkak@manchester.ac.uk nikos.foutris@manchester.ac.uk
(test.c): arm-none-eabi-gcc
Abstract ACM Reference Format:

Link test.o, startup.o, asm_entry.o
(test.elf): arm-none-eabi-ld

Christos Kotselidis, Andy Nisbet, Foivos S. Zakkak, and Nikos
Foutris. 2017. Cross-ISA Debugging in Meta-circular VMs. In Pro-

ion S B
I".s““cn:l”; b ! Ar‘cmtﬁﬂc.t“tr e;de?taqs ﬁ%’&cmﬁ’mgﬁ" ceedings of ACM SIGPLAN International Workshop on Virtual Ma-
ming and debugging etfort. Meta-circ $ add another chines and Intermediate Languages (VMIL’17). ACM, New York, NY,

level of complexity towards this aim since they have to com- USA, 9 pages. https://doi.org/10.1145/3141871.3141872
pile themselves with the same compiler that is being ex-

Extending current Virtual Machine implementations to new

Create test binary
(test.bin): arm-none-eabi-objcopy

Run QEMU with test.bin
qemu-system-arm-cpu cortex-al5 -m 128M -s -5 -kernel test.bin

Save output register file for validation
Validate output register values with expected ones
Return PASS/FAIL to MaxineTester

MaxineVM on RISC-V

Benchmarks

* Fedora 31 on top of Qemu
* SPECjvm2008 — 79% pass rate
* DaCapo — 60% pass rate

« Comparison against OpenJDK Zero

Results - SpecJVM2008

3.5

2.5

ops/m

0.5

0.04

compress

1.74

0.06

crypto

3.61

M OpenlDK Zero

M Maxine

0.93
0.82

derby

scimark

benchmark

0.39

0.06

serial

0.14

xml

1.17

Results - Dacapo

B Maxine
160 7 OpenlDK Zero
140
120
100
80
3
5 2
2 60 >
€
40
20
7.42
0.75
0 []
avrora fop jython luindex lusearch pmd sunflow xalan

benchmark

Ongoing Research

Performance

* MaxineVM is part of the Beehive ecosystem [1] 4
e https://github.com/beehive-lab

Scripting and Dynamic

@ Traditional Benchmarking Languanges
2 (SpecdVM, Dacapo, etc.) (Ruby, Scala, R, etc.) Big Data
_g Applicatiqns
= Computer Vision (Spark, Flink,
S DSLs(LLVMIR, etc,) SLAM Applications Hadoop, etc.)
// L] L]
Provide an extensible state-of-
.]
the-art infrastructure for hw/sw § Tt |
. P Py ol Hardware Acceleration
CO-deSI n research 2 £
':‘ = T1X C1 MAST
= = FPGA Accelerator
8 2 MMTk G1, ParallelGC, etc. Framework
(/2] . Services and Drivers
Operating System (PIN, MAMBO, MAMBO-X64)
4 A
Virtualization (KVM) } ‘
v ISA extensionsy
- Safe code modification on architectures without HW support for SMC [2] B Hcterogencous Architectures | Simulators Emulated
. = rchitectures
- Type-information elimination on archs with tagged pointers [3] S GEvs
- Hardware acceleration of managed languages on GPUs and FPGAs [4, 5] = Ful_Sysiom 2 Musle. MAMBO
. . . . Cacti || McPAT l NVSim | Hotspot D i
) . Py ynamic
i/lystems fohr co-simulation ?cf manageddlappllcatlons [6N]UMA . g T T— Binary
- Memory characterization of managed languages on archs £ (EEASTKNN, SVM) Translator
y g g g 8 Fault Injection

Jomod

-
Resiliency

https://github.com/beehive-lab

References

[1] C. Kotselidis, et al., “Project Beehive: A HW/SW co-designed stack for runtime and architectural research”, https://arxiv.org/abs/1509.04085
[2] T. Hartley, et al., “An Analysis of Call-Site Patching without Strong Hardware Support for Self-Modifying-Code”, In MPLR 2019

[3] A. Rodchenko, et al., “Type Information Elimination from Objects on Architectures with Tagged Pointers Support”, In IEEE TOC 2018

[4] J. Clarkson, et al, “Exploiting High-Performance Heterogeneous Hardware for Java Programs using Graal”, In ManLang 2018

[5] C. Kotselidis, et al., "Heterogeneous managed runtime systems: A computer vision case study”, In VEE 2017

[6] A. Rodchenko, et al., “MaxSim: A Simulation Platform for Managed Applications”, In ISPASS 2017

[7] O. Papadakis, et al., “You can't hide you can't run: a performance assessment of managed applications on a NUMA machine”, In MPLR 2020

https://arxiv.org/abs/1509.04085

Thank you!

