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• How to get « bare metal » performances from Silicon ?

• Cache coherency

• Chiplet partitioning

• Conclusion

OUTLINE
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HOW TO GET BARE METAL PERFORMANCES FROM SILICON ?

https://goo.gl/bb6wZW

Moore’s law: transistor density 

is still increasing
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 Many-core architecture

https://goo.gl/bb6wZW
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HOW TO GET BARE METAL PERFORMANCES FROM SILICON ?

https://goo.gl/bb6wZW

Dennard’s Law (as transistors 

shrink, they get faster, use 

less power) ended.

 At reasonable Total Dissipated Power (TDP)
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 Specialized hardware 

(accelerators)

https://goo.gl/bb6wZW
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HOW TO GET BARE METAL PERFORMANCES FROM SILICON ?

The cost of monolithic 

integration of System-

on-Chip (in a single 

7nm or 5nm die) is 

drastically increasing

Monolithic die

 Chiplets: heterogeneous 

compute is mapped on 

multiple dies to reduce 

manufacturing costs (higher 

yield) and development 

cost/time (reusability, 

scalability)

 Active Silicon 

Interposer: integrating 

I/O functions that are 

more difficult to scaleSource IBS 2020

 At reasonable development cost/time & manufacturing cost
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SoC disaggregation 

into 3D Integrated 

Circuit
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HOW DOES IT FIT IN A COMPUTING CHIP ?
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• Efficient, low-latency, hardware cache-coherency protocol

• Relaxed-Write-Through (RWT) protocol

• Virtual Memory: TLB coherency ensured by RWT protocol

• Write-back for private data, Write-through for shared data

• Prevention of False sharing issue

• Low-cost, scalable, coherent Network-on-Chip

• 4-channel NoC with 2 channels for coherency data

• Directory-based coherency with linked-list directory

• Broadcast & atomic operation support

• Adaptive L3 caches

• Adaptive remapping for application optimization

• Fault tolerance support

CACHE COHERENCY : KEY FEATURES 

3rd RISC-V Meeting | Denis Dutoit - CEA LIST

 Up to 1024 cache-coherent cores with private L1 caches

 Physically distributed and shared L2 caches (NUMA)

 Adaptive fault tolerant L3 caches (NUCA)

 Support of similar cores or heterogeneous cores

[E. Guthmuller, VLSISoC’ 2013] [E. Guthmuller, ESSCIRC’ 2018]

O(N×log(N)) hardware cost
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• Within INTACT, implemented 96 cores in 6 chiplets

• For system and many-core scalability, each chiplet contains 

cores + distributed L1/L2/L3 caches

• Support up to 56 chiplets (1024 cache-coherent cores)

• Area-efficient Cache Coherency solution

• L1 I-caches + D-caches (16 kB / core)

• Distributed Shared L2-caches (256 kB / cluster)

• Adaptive & fault tolerant L3-caches (4 tiles of 1 MB)

34 MByte L1+L2+L3 caches for 96 cores

Coherency area impact : less than 2%

• Energy efficiency

Coherency traffic : < 1% power budget
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CACHE COHERENCY : BENEFITS & RESULTS 

Chiplet Interconnects extended

from/to active interposer
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HOW DOES IT FIT IN A COMPUTING CHIP ?

 Chiplets

 Active Silicon Interposer
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Challenges are multiple: 3D technology, 

3D design enablement, 3D design flow, 

architecture partitioning, test, 

manufacturing…

INTACT demonstrator from CEA 
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• Chiplet Overview

• 4 cluster of 4 cores

• Distributed L1$ + L2$ + L3$

• Scalable Cache Coherency

• Power Management

• Active Interposer

• Distributed flexible interconnects

(low latency chiplet-to-chiplet traffic)

• Integrated Voltage Regulators

(1 per chiplet for local DVFS)

• Memory Controller & System IO’s

(off chip communication)

• SOC Infrastructure, Design-for-Test

INTACT : 6 CHIPLETS 3D-STACKED ON AN ACTIVE INTERPOSER
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• Die technologies

• Chiplet: FDSOI 28nm, Ultra Low Voltage, Body-Biasing, 22mm2

• Active Interposer: CMOS 65nm, MIM option, 200mm2

• 3D technology integration

• µ-bumps, 20µm pitch

• TSV middle, 40 µm pitch

• Face2Face assembly 

on package substrate

• 6 chiplets

INTACT : TECHNOLOGY & CIRCUIT OVERVIEW

Active Interposer 

front-face

Chiplet front-face

3D integration

and final package

3D cross-section

[P. Vivet, ISSCC’2020]

[P. Coudrain, ECTC’2020]
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• How to move from bare metal silicon to power 

efficient and cost efficient processors ?

• Many-core heterogeneous architectures

• SoC disaggregation into chiplets

 RISC-V is a unique opportunity to leverage 

heterogeneous many-core architectures

• Challenges are:

• Scalable and coherent cache

• 3D architecture and design

• Key assets from CEA, thanks to demonstrator 

development and characterization:

• Scalable cache coherency architecture

• INTACT: Six chiplets 3D-stacked on an active 

interposer 

CONCLUSION

Scalable and coherent cache

[P. Vivet, JSSC’2021]
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