
RISC-V for High Performance General Purpose Cores

RISC-V for High Performance
General Purpose Processors

Arthur Perais (arthur.perais@univ-grenoble-alpes.fr)

March 31st 2021

TIMA – CNRS/DR11 – UGA/Grenoble INP

RISC-V for High Performance General Purpose Cores 31.03.21 P 2

This Talk – Touching on a Couple Issues

• Approaching RISC-V from the statement « ISA has no impact on
performance »

• One example of a microarchitectural performance feature enabled by
RISC-V

Disclaimer : This is my opinion from my experience so far

RISC-V for High Performance General Purpose Cores 31.03.21 P 3

Context : Single-Thread is Here to Stay

• Parallel workloads still need sequential performance

𝑺𝒑𝒆𝒆𝒅𝒖𝒑 =
𝟏

𝟏 − 𝑷 +
𝑷

#𝒄𝒐𝒓𝒆𝒔

P : Parallel fraction of the program

• Many workloads without (much) DLP/TLP

• Sequential performance paramount

Amdahl’s Law

RISC-V for High Performance General Purpose Cores 31.03.21 P 4

ISA is Irrelevant in High
Performance Designs

Fact ?

RISC-V for High Performance General Purpose Cores 31.03.21 P 5

What do we Need for High Sequential Performance ?

• Fast instruction delivery

▪ Branch Predictors (cond., ind.), BTB

▪ I-Caches/TLBs/Prefetchers

BP

I$

ITLB

BTB

Mem. Hierarchy

IPF

RISC-V for High Performance General Purpose Cores 31.03.21 P 6

What do we Need for High Sequential Performance ?

• Fast instruction delivery

▪ Branch Predictors (cond., ind.), BTB

▪ I-Caches/TLBs/Prefetchers

• Minimize structural stalls

▪ Large instruction window to extract ILP/MLP

▪ Large buffers

▪ Wide execution

BP

I$

Mem. Hierarchy

ITLB

BTB

O
o
O

W
in

d
o
w

EXE

EXE

EXE

EXE

EXE

EXE

EXE

IPF

RISC-V for High Performance General Purpose Cores 31.03.21 P 7

What do we Need for High Sequential Performance ?

• Fast instruction delivery

▪ Branch Predictors (cond., ind.), BTB

▪ I-Caches/TLBs/Prefetchers

• Minimize structural stalls

▪ Large instruction window to extract ILP/MLP

▪ Large buffers

▪ Wide execution

• Fast data delivery

▪ D-Caches/TLBs/Prefetchers

BP

I$

Mem. Hierarchy

ITLB

BTB

O
o
O

W
in

d
o
w

EXE

EXE

EXE

LDST

LDST

EXE

EXE

IPF

D$

DPF

DTLB

RISC-V for High Performance General Purpose Cores 31.03.21 P 8

Is ISA itself going to impact the level of performance we can reach ?

• ISA « Tax » to enable high performance (not exhaustive)

▪ x86 : Legacy

• Variable-length encoding. Tax = Uop Cache

• Several others (push/pop dependency, partial reg. write, …)

RISC-V for High Performance General Purpose Cores 31.03.21 P 9

Is ISA itself going to impact the level of performance we can reach ?

• ISA « Tax » to enable high performance (not exhaustive)

▪ x86 : Legacy

• Variable-length encoding. Tax = Uop Cache

• Several others (push/pop dependency, partial reg. write, …)

▪ ARMv8 : No obvious quirk that I have dealt with so far

• I am sure we can find some

RISC-V for High Performance General Purpose Cores 31.03.21 P 10

• ISA « Tax » to enable high performance (not exhaustive)

▪ x86 : Legacy

• Variable-length encoding. Tax = Uop Cache

• Several others (push/pop dependency, partial reg. write, …)

▪ ARMv8 : No obvious quirk that I have dealt with so far

• I am sure we can find some

▪ RISC-V : ?

Is ISA itself going to impact the level of performance we can reach ?

RISC-V for High Performance General Purpose Cores 31.03.21 P 11

Executing a lot of Instructions

• ISA-independent problem : Instructions consume resources

• Physical register

• Instruction Queue (IQ) entry

• Load/Store Queue (LSQ) Entry

• Reorder Buffer (ROB) Entry

RISC-V for High Performance General Purpose Cores 31.03.21 P 12

Executing a lot of Instructions

• ISA-independent problem : Instructions consume resources

• Physical register

• Instruction Queue (IQ) entry

• Load/Store Queue (LSQ) Entry

• Reorder Buffer (ROB) Entry

• ISA-dependent problem : Work per instruction

RISC-V for High Performance General Purpose Cores 31.03.21 P 13

Executing a lot of Instructions

• ISA-independent problem : Instructions consume resources

• Physical register

• Instruction Queue (IQ) entry

• Load/Store Queue (LSQ) Entry

• Reorder Buffer (ROB) Entry

• ISA-dependent problem : Work per instruction

C code

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

RISC-V for High Performance General Purpose Cores 31.03.21 P 14

Executing a lot of Instructions

• ISA-independent problem : Instructions consume resources

• Physical register

• Instruction Queue (IQ) entry

• Load/Store Queue (LSQ) Entry

• Reorder Buffer (ROB) Entry

• ISA-dependent problem : Work per instruction

ARMv8

ldp x1, x2, [x3], #16

C code

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

RISC-V for High Performance General Purpose Cores 31.03.21 P 15

Executing a lot of Instructions

• ISA-independent problem : Instructions consume resources

• Physical register

• Instruction Queue (IQ) entry

• Load/Store Queue (LSQ) Entry

• Reorder Buffer (ROB) Entry

• ISA-dependent problem : Work per instruction

RV64G

LD x1, 0(x3)

LD x2, 8(x3)

ADDI x3, x3, 16

C code

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

ARMv8

ldp x1, x2, [x3], #16

RISC-V for High Performance General Purpose Cores 31.03.21 P 16

Executing a lot of Instructions

• High-performance context : Probably ?

• ldp x1, x2, [x3], #16 = 1 internal operation (uop)

• 1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access

Do I use 3x pipeline resources to do the same amount of work in RISC-V ?

RISC-V for High Performance General Purpose Cores 31.03.21 P 17

Executing a lot of Instructions

• High-performance context : Probably ?

• ldp x1, x2, [x3], #16 = 1 internal operation (uop)

• 1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access

• RISC-V = 3 uop = 3 ROB/Scheduler, 2 LDQ, 2 D-Cache access. Same work done.

Do I use 3x pipeline resources to do the same amount of work in RISC-V ?

ARMv8 RV64G

ROB

IQ

LDQ

D$ accesses

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

RISC-V for High Performance General Purpose Cores 31.03.21 P 18

Executing a lot of Instructions

• High-performance context : Probably ?

• ldp x1, x2, [x3], #16 = 1 internal operation (uop)

• 1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access

• RISC-V = 3 uop = 3 ROB/Scheduler, 2 LDQ, 2 D-Cache access. Same work done.

• Other example : ldr x1, [x2 + x3] pretty useful, not supported natively in RISC-V

Do I use 3x pipeline resources to do the same amount of work in RISC-V ?

ARMv8 RV64G

ROB

IQ

LDQ

D$ accesses

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

RISC-V for High Performance General Purpose Cores 31.03.21 P 19

Executing a lot of Instructions

• Instruction fusion is envisioned to save the day

Do I use 3x pipeline resources to do the same amount of work in RISC-V ?

LD x1, 0(x3)

LD x2, 8(x3)

ADDI x3, x3, 16

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

CPU

Fusion ldp_uop x1, x2, [x3], #16gcc

Compile time Runtime

RISC-V for High Performance General Purpose Cores 31.03.21 P 20

Executing a lot of Instructions

• Instruction fusion is envisioned to save the day

Do I use 3x pipeline resources to do the same amount of work in RISC-V ?

LD x1, 0(x3)

LD x2, 8(x3)

ADDI x3, x3, 16

uint64_t a = *c

uint64_t b = *(c + 1)

c = c + 2

CPU

Fusion ldp_uop x1, x2, [x3], #16gcc

Compile time Runtime

RISC-V high performance « tax » : Fusion

RISC-V for High Performance General Purpose Cores 31.03.21 P 21

Instruction Fusion - Considerations

• Impact on microarchitecture :

▪ What if instructions do not enter the pipeline together ? Fusing accross cycles ?

ADD x1, x2, x3

LD x1, 0(x1)

Fetch:

LD x1, 0(x1)

Decode:

Bubble

Rename:

ADD x1, x2, x3

Fuse ?

RISC-V for High Performance General Purpose Cores 31.03.21 P 22

Instruction Fusion - Considerations

• Impact on microarchitecture :

▪ What if instructions do not enter the pipeline together ? Fusing accross cycles ?

• Potentially hard (instructions cycles away may be far away physically)

• If cannot fuse accross cycles, missed opportunity

• ARMv8/x86 have load base reg + offset reg as part of the ISA : 0 missed
opportunities

ADD x1, x2, x3

LD x1, 0(x1)

Fetch:

LD x1, 0(x1)

Decode:

Bubble

Rename:

ADD x1, x2, x3

Fuse ?

RISC-V for High Performance General Purpose Cores

• Compiler intervention :

▪ Can HW fuse « over » instructions ?

31.03.21 P 23

Instruction Fusion - Considerations

ADD x1, x2, x3

LD x4, 0(x5)

LD x1, 0(x1)

CPU

Fusion
Source gcc ?gcc

RISC-V for High Performance General Purpose Cores

• Compiler intervention :

▪ Can HW fuse « over » instructions ?

• Yes : Complexity to « unfuse » if LD x4, 0(x5) causes an exception

• No : Missed opportunity if compiler is not aware of available fusion idioms

• Again, ARMv8/x86 have load base reg + offset reg as part of the ISA : 0
missed opportunities

31.03.21 P 24

Instruction Fusion - Considerations

ADD x1, x2, x3

LD x4, 0(x5)

LD x1, 0(x1)

CPU

Fusion
Source gcc ?gcc

RISC-V for High Performance General Purpose Cores 31.03.21 P 25

Instruction Fusion - Considerations

• « Those issues are ISA independent »

▪ x86/ARMv8 : cmp + branch fusion, important, but just one idiom

• Remove it, lose 0-5% perf (ballpark)

RISC-V for High Performance General Purpose Cores 31.03.21 P 26

Instruction Fusion - Considerations

• « Those issues are ISA independent »

▪ x86/ARMv8 : cmp + branch fusion, important, but just one idiom

• Remove it, lose 0-5% perf (ballpark)

▪ RISC-V :

• ADD + LD = Load [base reg + offset reg]

• LD + LD = Load pair

• ADDI + LD (+ LD) = Pre-indexed load (pair)

• LD + (LD +) ADDI = Post-indexed load (pair)

• Shift + ALU = Shifted ALU

• Etc.

▪ Many idioms needed to equalize amount of work per HW resource vs. x86/ARMv8

• Likely a pillar of high-performance RISC-V

RISC-V for High Performance General Purpose Cores 31.03.21 P 27

ISA Irrelevant ?

• All ISAs have a « tax » or « entry ticket » for high performance

• To deal with the ISA aspects that are not adapted to high performance

• No evidence that ISA makes or breaks performance so far

• Intel/Amd demonstrate that x86 can lead in sequential performance

• Apple M1 demonstrates that ARMv8 can reach x86-level of sequential performance

• Assuming no blocking issue with scaling instruction fusion, high performance RISC-V seems
possible

RISC-V for High Performance General Purpose Cores 31.03.21 P 28

Does RISC-V Enable
Specific Performance
Features ?

One example feature

RISC-V for High Performance General Purpose Cores 31.03.21 P 29

One Example

• Read-After-Write dependencies

• Encode program semantics

• True dependencies

• Limit ILP, hence the work we can do each cycle

• Value Prediction

• Predict instructions’ results (like branch direction)

RISC-V for High Performance General Purpose Cores 31.03.21 P 30

Value Prediction

BP

I$

Mem. Hierarchy

ITLB

BTB

O
o

O
W

in
d
o
w

EXE

EXE

EXE

LDST

LDST

EXE

EXE

IPF

D$

DPF

DTLB

Value

Pred

predict validate & update

RISC-V for High Performance General Purpose Cores 31.03.21 P 31

Value Prediction

• Value Prediction in General :

• Predictor is big (predicting 64-bit values)

• Additional datapath to send multiple 64-bit values from the predictor to the backend each
cycle

➢ Improves performance but adds complexity and costs area/power

RISC-V for High Performance General Purpose Cores 31.03.21 P 32

Value Prediction

• Variation : Limited Value Prediction

• Distribution of 64-bit results in SPEC2k17 (x86, train inputs)

• 0x0 and 0x1 = close to 6% of the dynamic results

 P
e

ra
is

, «
A

 C
a

s
e

 fo
r S

p
e

c
u

la
tiv

e
S

tre
n

g
th

R
e
d

u
c
tio

n
»

, IE
E

E
 C

A
L

, 2
0

2
1

RISC-V for High Performance General Purpose Cores 31.03.21 P 33

Value Prediction

• Variation : Limited Value Prediction

• Just predict zeroes/ones

• Smaller predictor

• Can write predictions to PRF implicitly through renaming and hardwired zero/one
physical registers

RISC-V for High Performance General Purpose Cores 31.03.21 P 34

Speculative Strength Reduction (SSR)

• Variation : Limited Value Prediction

• Just predict zeroes/ones

• Smaller predictor

• Can write predictiones to PRF implicitly through renaming and hardwired zero/one
physical registers

• Build on top : Speculative Strength Reduction (SSR)

▪ Execute instructions at rename, enabled by predicting 0x0/0x1

▪ add r0, r1, r2 reduces to mov r0, r1 if r2 predicted to be 0 (move eliminated)

• Several others

▪ Saves on latency (0-cycle) and backend resources (scheduler, functional unit)

RISC-V for High Performance General Purpose Cores 31.03.21 P 35

Speculative Strength Reduction (SSR)

• Percentage of dynamic instructions that can be speculatively strength reduced

• State of the art value predictor, x86, SPEC2k17speed train

P
e

ra
is

, «
A

 C
a

s
e

 fo
r S

p
e

c
u

la
tiv

e
S

tre
n

g
th

R
e
d

u
c
tio

n
»

, IE
E

E
 C

A
L

, 2
0

2
1

RISC-V for High Performance General Purpose Cores 31.03.21 P 36

Impact of ISA on SSR

• Strength Reduction and x86

• Most x86 instructions have side effects (writing the ccflags)

• Instruction reduced to move still need to go compute the flags in the backend

• SSR helps latency, but does not save as much as it could on pipeline resources

RISC-V for High Performance General Purpose Cores 31.03.21 P 37

Impact of ISA on SSR

• Strength Reduction and x86

• Most x86 instructions have side effects (writing the ccflags)

• Instruction reduced to move still need to go compute the flags in the backend

• SSR helps latency, but does not save as much as it could on pipeline resources

• Strength Reduction and ARMv8

• Only few instructions write the ccflags and cannot disappear at Rename.

• However : cmp + branch fusion can deal with those

RISC-V for High Performance General Purpose Cores 31.03.21 P 38

Impact of ISA on SSR

• Strength Reduction and x86

• Most x86 instructions have side effects (writing the ccflags)

• Instruction reduced to move still need to go compute the flags in the backend

• SSR helps latency, but does not save as much as it could on pipeline resources

• Strength Reduction and ARMv8

• Only few instructions write the ccflags and cannot disappear at Rename.

• However : cmp + branch fusion can deal with those

• Strength Reduction and RISC-V

• No ccflags = no side effects

• Reduced instructions can always disappear at Rename

Not a huge advantage vs ARMv8, but a significant one vs x86

RISC-V for High Performance General Purpose Cores 31.03.21 P 39

Conclusion

• High-performance RISC-V

• If you pay the fusion tax

• SSR : Dataflow-based optimization facilitated by ISA regularity

• Statement about performance, not other features (virtualization, security, etc.)

RISC-V for High Performance General Purpose Cores

www.cnrs.fr

31.03.21 P 40

That’s all folks !

SLS : http://tima.univ-grenoble-alpes.fr/tima/fr/sls/slsoverview.html

Perso : http://aperais.fr

http://tima.univ-grenoble-alpes.fr/tima/fr/sls/slsoverview.html
https://aperais.fr/

RISC-V for High Performance General Purpose Cores 31.03.21 P 41

Backup : RISC-V Fusion Idioms (source : wikichips)

RISC-V for High Performance General Purpose Cores 31.03.21 P 42

Backup : CAL Figure

P
e

ra
is

, «
A

 C
a

s
e

 fo
r S

p
e

c
u

la
tiv

e
 S

tre
n

g
th

 R
e

d
u

c
tio

n
»

, IE
E

E
 C

A
L

, 2
0

2
1

