RISC-V for High Performance UGA Grenobl

Université

General Purpose Processors Grenoble Alpes

Arthur Perais (arthur.perais@univ-grenoble-alpes.fr)

(Il]" March31st2021

Z~ " TIMA ~ CNRS/DR11=UGA/Grenoble INP

This Talk — Touching on a Couple Issues

Approaching RISC-V from the statement « ISA has no impact on
performance »

One example of a microarchitectural performance feature enabled by
RISC-V

Disclaimer : This is my opinion from my experience so far

RISC-V for High Performance General Purpose Cores 31.03.21

I Context : Single-Thread is Here to Stay

Parallel workloads still need sequential performance

1

_ p A hl’s L
1-P)+ #cores mdahl’s Law

P . Parallel fraction of the program

Speedup =

Many workloads without (much) DLP/TLP
* Seguential performance paramount

RISC-V for High Performance General Purpose Cores 31.03.21 P3

ISA is Irrelevant in High
Performance Designs

Fact ?

RISC-V for High Performance General Purpose Cores 31.03.21

What do we Need for High Sequential Performance ?

Mem. Hierarchy
B - Fastinstruction delivery

= Branch Predictors (cond., ind.), BTB

= |-Caches/TLBs/Prefetchers 4

RISC-V for High Performance General Purpose Cores 31.03.21 P5

What do we Need for High Sequential Performance ?

. Hierarchy

Bl - Fastinstruction delivery
= Branch Predictors (cond., ind.), BTB
» |-Caches/TLBs/Prefetchers

Il - Minimize structural stalls
= Large instruction window to extract ILP/MLP
= Large buffers
= Wide execution

000 Window

RISC-V for High Performance General Purpose Cores 31.03.21 P6

What do we Need for High Sequential Performance ?

. Hierarchy

Bl - Fastinstruction delivery
= Branch Predictors (cond., ind.), BTB
» |-Caches/TLBs/Prefetchers

Il - Minimize structural stalls
= Large instruction window to extract ILP/MLP
= Large buffers
= Wide execution

000 Window

B - Fast data delivery
= D-Caches/TLBs/Prefetchers

RISC-V for High Performance General Purpose Cores 31.03.21 P7

Is ISA itself going to impact the level of performance we can reach ?

ISA « Tax » to enable high performance (not exhaustive)
= Xx86 : Legacy
Variable-length encoding. Tax = Uop Cache
Several others (push/pop dependency, partial reg. write, ...)

RISC-V for High Performance General Purpose Cores 31.03.21

Is ISA itself going to impact the level of performance we can reach ?

ISA « Tax » to enable high performance (not exhaustive)
= Xx86 : Legacy
Variable-length encoding. Tax = Uop Cache
Several others (push/pop dependency, partial reg. write, ...)

= ARMvV8 : No obvious quirk that | have dealt with so far
| am sure we can find some

RISC-V for High Performance General Purpose Cores 31.03.21

Is ISA itself going to impact the level of performance we can reach ?

ISA « Tax » to enable high performance (not exhaustive)
= Xx86 : Legacy
Variable-length encoding. Tax = Uop Cache
Several others (push/pop dependency, partial reg. write, ...)

= ARMvV8 : No obvious quirk that | have dealt with so far
| am sure we can find some

= RISC-V:?

RISC-V for High Performance General Purpose Cores 31.03.21 P 10

Executing a lot of Instructions

* ISA-independent problem : Instructions consume resources
* Physical register
* Instruction Queue (IQ) entry
« Load/Store Queue (LSQ) Entry
* Reorder Buffer (ROB) Entry

RISC-V for High Performance General Purpose Cores 31.03.21

Executing a lot of Instructions

* ISA-independent problem : Instructions consume resources
* Physical register
* Instruction Queue (IQ) entry
« Load/Store Queue (LSQ) Entry
* Reorder Buffer (ROB) Entry

* ISA-dependent problem : Work per instruction

RISC-V for High Performance General Purpose Cores 31.03.21

Executing a lot of Instructions

* ISA-independent problem : Instructions consume resources
* Physical register
* Instruction Queue (IQ) entry
« Load/Store Queue (LSQ) Entry
* Reorder Buffer (ROB) Entry

* ISA-dependent problem : Work per instruction

C code

uinté4 _ta =*c
uinté4_tb =*(c + 1)
c=c+2

RISC-V for High Performance General Purpose Cores 31.03.21

I Executing a lot of Instructions

* ISA-independent problem : Instructions consume resources
* Physical register
* Instruction Queue (IQ) entry
« Load/Store Queue (LSQ) Entry
* Reorder Buffer (ROB) Entry

* ISA-dependent problem : Work per instruction

C code ARMv8

uinté4_ta =*c ldp x1, x2, [x3], #16
uinté4_tb =*(c + 1)
cC=Cc+2

RISC-V for High Performance General Purpose Cores 31.03.21

I Executing a lot of Instructions

* ISA-independent problem : Instructions consume resources
* Physical register
* Instruction Queue (IQ) entry
« Load/Store Queue (LSQ) Entry
* Reorder Buffer (ROB) Entry

* ISA-dependent problem : Work per instruction

C code ARMv8 RV64G
uinté4 ta =*c ldp x1, x2, [x3], #16 LD x1, 0(x3)
uinté4 tb =*(c + 1) LD x2, 8(x3)
c=c+2 ADDI x3, x3, 16

31.03.21

RISC-V for High Performance General Purpose Cores

Executing a lot of Instructions

Do | use 3x pipeline resources to do the same amount of work in RISC-V ?

High-performance context : Probably ?
« Idp x1, x2, [x3], #16 = 1 internal operation (uop)
1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access

RISC-V for High Performance General Purpose Cores 31.03.21 P 16

Executing a lot of Instructions

Do | use 3x pipeline resources to do the same amount of work in RISC-V ?

High-performance context : Probably ?
« Idp x1, x2, [x3], #16 = 1 internal operation (uop)
1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access
* RISC-V =3 uop = 3 ROB/Scheduler, 2 LDQ, 2 D-Cache access. Same work done.

ARMvS RV64G

uinté4 ta=*c ROB

uinté4_tb=*c+1) My "
C=Cc+?2 LDQ
D$ accesses

RISC-V for High Performance General Purpose Cores 31.03.21 P17

Executing a lot of Instructions

Do | use 3x pipeline resources to do the same amount of work in RISC-V ?

High-performance context : Probably ?
« Idp x1, x2, [x3], #16 = 1 internal operation (uop)
1 ROB, 1 Scheduler, 1 LDQ, 1 D-Cache access
* RISC-V =3 uop = 3 ROB/Scheduler, 2 LDQ, 2 D-Cache access. Same work done.
* Other example : Idr x1, [x2 + x3] pretty useful, not supported natively in RISC-V

ARMvS RV64G

uinté4 ta=*c ROB

uinté4_tb=*c+1) My "
c=c+2 LDQ
D$ accesses

RISC-V for High Performance General Purpose Cores 31.03.21 P 18

I Executing a lot of Instructions

Do | use 3x pipeline resources to do the same amount of work in RISC-V ?

Instruction fusion is envisioned to save the day

Compile time Runtime
uinté4 ta =*c LD x1, 0(x3)
uinté4_tb =*(c + 1) LD x2, 8(x3) ldp_uop x1, x2, [x3], #16
c=c+2 ADDI x3, x3, 16

RISC-V for High Performance General Purpose Cores 31.03.21 P19

I Executing a lot of Instructions

Do | use 3x pipeline resources to do the same amount of work in RISC-V ?

Instruction fusion is envisioned to save the day

Compile time Runtime
uinté4 _ta =*c LD x1, 0(x3)
uinté4 tb =*(c + 1) LD x2, 8(x3) ldp_uop x1, x2, [x3], #16
c=c+2 ADDI x3, x3, 16

RISC-V high performance « tax » : Fusion

RISC-V for High Performance General Purpose Cores 31.03.21 P 20

Instruction Fusion - Considerations

« Impact on microarchitecture :

ADD x1, x2, x3
LD x1, 0(x1)

= What if instructions do not enter the pipeline together ? Fusing accross cycles ?

Fetch: Decode: ENETES

LD x1, 0(x1) Bubble ADD x1, x2, x3

Fuse ?

RISC-V for High Performance General Purpose Cores 31.03.21 P21

Instruction Fusion - Considerations

« Impact on microarchitecture :

ADD x1, x2, x3
LD x1, 0(x1)

= What if instructions do not enter the pipeline together ? Fusing accross cycles ?
- Potentially hard (instructions cycles away may be far away physically)
« If cannot fuse accross cycles, missed opportunity

+ ARMv8/x86 have load base reg + offset reg as part of the ISA : 0 missed
opportunities

Fetch: Decode: ENETES

LD x1, 0(x1) Bubble ADD x1, x2, x3

Fuse ?

RISC-V for High Performance General Purpose Cores 31.03.21 P22

Instruction Fusion - Considerations

« Compiler intervention :

«0—~ LD x4, 0(x5) —»@— ?

= Can HW fuse « over » instructions ?

RISC-V for High Performance General Purpose Cores 31.03.21 P23

Instruction Fusion - Considerations

« Compiler intervention :

& oot %®_ >

= Can HW fuse « over » instructions ?
* Yes : Complexity to « unfuse » if LD x4, 0(x5) causes an exception
* No : Missed opportunity if compiler is not aware of available fusion idioms

- Again, ARMv8/x86 have load base reg + offset reg as part of the ISA : 0
missed opportunities

RISC-V for High Performance General Purpose Cores 31.03.21 P24

Instruction Fusion - Considerations

 « Those issues are ISA independent »
= x86/ARMVS : cmp + branch fusion, important, but just one idiom
+ Remove it, lose 0-5% perf (ballpark)

RISC-V for High Performance General Purpose Cores 31.03.21

Instruction Fusion - Considerations

« Those issues are ISA independent »
= x86/ARMVS : cmp + branch fusion, important, but just one idiom
Remove it, lose 0-5% perf (ballpark)

= RISC-V:
ADD + LD = Load [base reg + offset reg]
LD + LD = Load pair
ADDI + LD (+ LD) = Pre-indexed load (pair)
LD + (LD +) ADDI = Post-indexed load (pair)
Shift + ALU = Shifted ALU
Etc.

= Many idioms needed to equalize amount of work per HW resource vs. x86/ARMv8
Likely a pillar of high-performance RISC-V

RISC-V for High Performance General Purpose Cores 31.03.21 P 26

ISA Irrelevant ?

All ISAs have a « tax » or « entry ticket » for high performance
To deal with the ISA aspects that are not adapted to high performance

No evidence that ISA makes or breaks performance so far

* Intel/Amd demonstrate that x86 can lead in sequential performance
Apple M1 demonstrates that ARMv8 can reach x86-level of sequential performance
Assuming no blocking issue with scaling instruction fusion, high performance RISC-V seems

possible

RISC-V for High Performance General Purpose Cores 31.03.21 P27

Does RISC-V Enable
Specific Performance
Features ?

One example feature

RISC-V for High Performance General Purpose Cores 31.03.21

One Example

* Read-After-Write dependencies
* Encode program semantics
* True dependencies
« Limit ILP, hence the work we can do each cycle

* Value Prediction
* Predict instructions’ results (like branch direction)

RISC-V for High Performance General Purpose Cores 31.03.21

Value Prediction

A 4

. Hierarchy um

DPF

EXE
EXE

LDST

LDST

predict

EXE

0Oo00 Window

EXE

EXE
validate & update

RISC-V for High Performance General Purpose Cores

31.03.21

P 30

Value Prediction

Value Prediction in General :
« Predictor is big (predicting 64-bit values)

« Additional datapath to send multiple 64-bit values from the predictor to the backend each
cycle

> Improves performance but adds complexity and costs area/power

RISC-V for High Performance General Purpose Cores 31.03.21 P31

Value Prediction

* Variation : Limited Value Prediction
* Distribution of 64-bit results in SPEC2k17 (x86, train inputs)
* 0x0 and 0x1 = close to 6% of the dynamic results

5

Dyn. Value Distribution (GPRS) (%)
N) w I

o

120z “1vD 333 ‘« uoponpay yibusns sanenoads 1oy ased v » ‘siesad

RISC-V for High Performance General Purpose Cores 31.03.21

Value Prediction

* Variation : Limited Value Prediction
* Just predict zeroes/ones
« Smaller predictor

« Can write predictions to PRF implicitly through renaming and hardwired zero/one
physical registers

RISC-V for High Performance General Purpose Cores 31.03.21

Speculative Strength Reduction (SSR)

Variation : Limited Value Prediction
* Just predict zeroes/ones
Smaller predictor

Can write predictiones to PRF implicitly through renaming and hardwired zero/one
physical registers

Build on top : Speculative Strength Reduction (SSR)
= Execute instructions at rename, enabled by predicting 0x0/0x1
= addr0,rl, r2 reduces to mov rO, rlif r2 predicted to be 0 (move eliminated)
Several others
= Saves on latency (0-cycle) and backend resources (scheduler, functional unit)

RISC-V for High Performance General Purpose Cores 31.03.21

P34

I Speculative Strength Reduction (SSR)

Percentage of dynamic instructions that can be speculatively strength reduced

Perais, « A Case for Speculative Strength Reduction », IEEE CAL, 2021

% Speculatively Strength Reducible Dynamic Instructions

N
—

State of the art value predictor, x86, SPEC2k17speed train

o [ce] © <
—

(%) suononujsuy alweuAqg

N

31.03.21 P35 I

RISC-V for High Performance General Purpose Cores

Impact of ISA on SSR

Strength Reduction and x86
* Most x86 instructions have side effects (writing the ccflags)
Instruction reduced to move still need to go compute the flags in the backend
SSR helps latency, but does not save as much as it could on pipeline resources

RISC-V for High Performance General Purpose Cores 31.03.21 P 36

Impact of ISA on SSR

Strength Reduction and x86
* Most x86 instructions have side effects (writing the ccflags)
Instruction reduced to move still need to go compute the flags in the backend
SSR helps latency, but does not save as much as it could on pipeline resources

Strength Reduction and ARMvS8

* Only few instructions write the ccflags and cannot disappear at Rename.
However : cmp + branch fusion can deal with those

RISC-V for High Performance General Purpose Cores 31.03.21 P 37

Impact of ISA on SSR

Strength Reduction and x86
* Most x86 instructions have side effects (writing the ccflags)
Instruction reduced to move still need to go compute the flags in the backend
SSR helps latency, but does not save as much as it could on pipeline resources

Strength Reduction and ARMvS8

* Only few instructions write the ccflags and cannot disappear at Rename.
However : cmp + branch fusion can deal with those

Strength Reduction and RISC-V

* No ccflags = no side effects
Reduced instructions can always disappear at Rename

Not a huge advantage vs ARMv8, but a significant one vs x86

RISC-V for High Performance General Purpose Cores 31.03.21

P 38

Conclusion

High-performance RISC-V
« If you pay the fusion tax
+ SSR : Dataflow-based optimization facilitated by ISA regularity

« Statement about performance, not other features (virtualization, security, etc.)

RISC-V for High Performance General Purpose Cores 31.03.21 P 39

That’s all folks !
at’s all folks Illf‘

CNRS - Grenoble INP - UGA

UCA ...

Université
Grenoble Alpes /

e

SLS : http://tima.univ-grenoble-alpes.fr/tima/fr/sls/slsoverview.html

Perso : http://aperais.fr

www.cnrs.fr

RISC-V for High Performance General Purpose Cores 31.03.21 P 40

http://tima.univ-grenoble-alpes.fr/tima/fr/sls/slsoverview.html
https://aperais.fr/

Backup : RISC-V Fusion Idioms (source : wikichips)

Pattern T Pattern Result
/! rd = array[offset] {/ far jump (1 MB) (AUIPC+JALR)
add rd, rs1, rs2 Fused into an indexed load auipc t, imm20 Fused far jump and link with calculated target address
Id rd, 0(rd) jalr ra, imm12(t)

1/ &(array[offset]) addiw rd, rs1, imm12
sllird, rs1, {1,2,3} Fused into a load effective address sllird, rs1, 32 Fused into a single 32-bit zero extending add operation
add rd, rd, rs2 SRLIrd, rs1, 32

/i rd = array[offset] mulh[[S]U] rdh, rs1, rs2

sllird, rs1, {1,2,3})))) mul rdl, rs1, rs2
Three-instruction fused into a load effective address

add rd, rd, rs2 div[U] rdq, rs1, rs2
Id rd, 0(rd)

f/l rd = rs1 & OxFFFEFFff /f |dpair rd1,rd2, [imm(rs1)]
sllird, rs1, 32 Clear upper word Id rd1, imm(rs1)
srlird, rd, 32 Id rd2, imm+8(rs1)

fI rd = imm([31:0] // Idia rd, imm(rs1)
lui rd, imm([31:12] Load upper immediate Id rd, imm(rs1)

addi rd, rd, imm([11:0]

Fused into a wide multiply

Fused into a wide divide
rem[U] rdr, rs1, rs2

Fused into a load-pair

Fused into a post-indexed load
add rs1, rs1, 8

/i rd = *(imm[31:0])

lui rd, imm([31:12] Load upper immediate

Id rd, imm[11:0](rd)

// I[dw] rd, symbol[31:0]

auipc rd, symbol[31:12] Load global immediate

I[dw] rd, symbol[11:0](rd)

RISC-V for High Performance General Purpose Cores 31.03.21

Perais, « A Case for Speculative Strength Reduction », IEEE CAL, 2021

reg

imm and mov reg,

- SSR-able insts with 13KB VTAGE value predictor [14]
able through tracking mov reg,

- DSR-

|:| DSR Instructions (Table | rules + Branches)

igure

| SSLINNLINL I N L BN B I N N B I B B B |

N o [ee] ©o < N o
-~ -~

CAL F

(%) suononujsuy oiweulq Qo,c

Backup

31.03.21

RISC-V for High Performance General Purpose Cores

