
An Open Source RISC-V GPU ISA Extension

Abel BernabeuAtif Zafar

1

Atif@Pixilica.com Abel.Bernabeu@Gmail.com

Introduction

RISC-V is the leading open-source ISA with over 300 companies supporting it

- No open-source GPU ISA extension currently available for this
- We are a group of enthusiasts who wish to develop such an ISA

Why is another GPU needed?

- Commercial offerings are inaccessible to small projects, makers, startups
- Many use cases in the low-end (embedded displays, handheld gaming…)
- Customers want to be able to change feature sets

- Open-source drivers will allow this
- Can avail features like dual-frustum clipping, SLAM, Kalman filters in HW

- The IP can go into ASICs, SoCs, FPGAs or as a software implementation
- Power Management is another issue - this ISA can be very low power

2

We need your help

We are currently in need of

- RISC-V Vector ISA simulator
- Assistance with LLVM back-end development
- RTL design expertise

Our Timeline

- Initial (alpha) ISA specification - socialize within the RISC-V community
- Software model development + driver and demos
- RTL development (for FPGA and then ASIC)

3

Roadmap

- We will adhere to a layered extension architecture in the spirit of RISC-V

- Initial support for OpenGL ES 2.0 (programmable shaders)

- Subsequently Vulkan and ES 3.0 (SPIR-V)

4

OpenGL ES 2.0

Vulkan 1.0

OpenGL ES 3.0

Technical Description of RV64X
Abel Bernabeu

5

RV64X requirements

- Support programmable graphics (OpenGL ES 2.0 or better)

 - Close mapping to SPIR-V, used as IR in the shader compiler

- Prove the fused CPU-GPU ISA concept (unified instruction
decoder)

- Fully preemptible

- Featuring a unified memory architecture
6

General purpose
RISC-V V

core

L3 cache

Texturing Unit

Transcendentals Unit

Matrix Algebra Unit

CSRs Description

wgwidth Workgroup width

wgheight Workgroup height

RV64V RV64X

7

Pixel Backend

Workgroups

8

Workgroup width and height and not just a vector length?

- Most obvious reason: OpenCL programming model

- Not so obvious: pixel shaders capable of different patch
shapes.

Examples: 0,0 1,0

0,1 1,1

0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 1,2 3,2

0,3 1,3 2,3 3,3

9

Matrix Algebra Unit

10

Going from a “vector” to a “matrix” architecture

11

Vector: Common length for sources and destination operands

Matrix: Source operands are two arbitrarily shaped matrices

Destination has an implicit shape, that depends on the
operation and the sources

Example: a 4x4 row major matrix per pixel

v4n

v4n+1

v4n+2

v4n+3

Row 0Row 1Row 2Row 3

Pixel 0
(Work item 0,1)

Pixel 1
(Work item 1,1)

Pixel 2
(Work item 0,1)

Pixel 3
(Work item 1,1)

2048 bits register group
vtype: VLEN=512 bits, LMUL=4 regs, SEW=32 bits

12

mtype: matrix dimensions

RV64V CSR RV64X CSRs
vtype (vtype, wgwidth, wgheight, mtype)

Variable allocation Variable allocation and
dimensional structure

13

One product to rule them all

for (i = 0; i < I; ++i) {
 for (j = 0; j < J; ++j) {
 acc = 0
 for (k = 0; k < K; ++k)
 acc += a(i,k) * b(k,j)
 c(i, j) = acc
 }
}

matrix x matrix
matrix x vector
vector x matrix
dot
scalar x matrix
scalar x vector

even a transpose!

14

xmatmul

Texturing Unit

15

Texturing CSRs

CSRs Description

sdt Sampler desc table base address

ivdt Image view desc table base address

sampler Index into sdt for filtering settings

imgview Index into ivdt for image view

16

Texturing instructions

Mnemonic Description

xlivd
xlsd

Image view descriptor and sampler load

xsample Sample at a given coordinate and LoD

xdpd{x|y} Partial derivatives

xlod Implicit level of detail

xproj Projection

xtcinv Texture cache invalidation

17

Trascendentals Unit

18

Transcendentals

xsin

xcos

xtan

xexp

xlog

xpow

xrcp

xrsq

xsqrt

xasin

xacos

xatan

19

Pixel backend

20

Pixel backend (1/2)

CSRs Description

crtdt Color render target descriptor table base address

dsrtdt Depth/stencil render target descriptor table base address

Pixel backend (2/2)

22

CSRs Description

globalx
globaly

Fragment position for upper-left pixel in patch

stencilop_{front|back}
stenciltest_{front|back}
stencilref_{front|back}
stencilmask_{front|back}

Stentil op and test for {front|back} facing polygons

blendop Current blending mode for color

Basic instructions Instructions for custom blending

xdstest vd # Depth/stencil test
xblend vs # Color blending
xlfragc vd # Loads gl_FragCoord

xlcolor vd # Color load
xscolor vs # Color store

Software Architecture

23

Software Architecture

24

Application

Khronos APIs
(OpenGL ES 2.0, Vulkan)

Custom Low-Level or High-Level
3D Graphics APIs

Graphics Hardware (User access to registers, ISA, unified memory, CSRs)

Key Advantage:

Access to registers, ISA, memory allows developers to write their own low-level
drivers. This means custom rasterizers, compute processes and data structures
that can be instantiated once and used by multiple shaders.

Summary

Value proposition for RV64X

- Fully Preemptible Architecture
- Unified Memory Design
- Open-Source Drivers
- Full Access to the ISA
- Combined CPU-GPU ISA (Full RISC-V Ecosystem Integration)
- Follows Khronos and other Standards

25

Acknowledgements

We wish to thank the following individuals for their support:

RV64X Team Members

Mick Thomas Lim
Peter Lieber

Advisor

Dr. Jon Peddie

26

Backup

27

mtype CSR layout
STYPE Scalar type

LPWI LHS: data per work-item?

LW LHS: width (power of 2)

LH LHS: height (power of 2)

LMAJ LHS: row or col major (default row major)

LMOD LHS: vreg, scalar splat or IDENTITY

RPWI ...

RW ...

RH ...

RMAJ ...

RMOD ...
28

RV64X encoding space

major opcode =1100111b (jalr), funct3 = 100b

22 bits per instructions

7 bits secondary opcode
5 bits destination
5 bits source 1
5 bits source 2

29

