
CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

Secure Debug architecture on RISC-V

3rd RISC-V Week

March 2021, 31st

Yann Loisel, SiFive Principal Security Architect

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

222

scenario: A RISC-V-based platform owner does not want to disable the RISC-V debug
interface but wants to securely control who has access to it.

The profiles of who can access are:
• a developer,
• a production operator,
• a maintenance operator,
• a technician,
• a RMA operator

use cases, the challenge

“To help bring up and debug low-level software and hardware, it is
critical to have good debugging support built into the hardware”

(RISC-V debug spec)

The debug interface is the best and the worst of things; best for debugging,worst for
security

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

333

introduction

PC

IDE

● a secure protocol is proposed to control the core debug using the chip debug interface
between the PC and the chip via the probe

● this protocol is mandatory to enable the communication on the debug interface

● this secure debug proposal benefits from the availability of the Secure Startup
firmware on the chip

● the protocol is using authentication with public crypto and symmetric encryption
(optional)

● the probe initially sends a magic sequence, the CCID, to the debug module to inform
the chip about a debug session opening request: the CCID is not a secret, only an
identification value

● Once the identification is performed, the chip firmware is able to manage the
communication

● if the authentication is successful, the debug mechanism is enabled.

probe chip

● CCID: Customer/Chip Identification: magic word
● IDE: integrated development environment
● DM: debug module
● AM: authentication module
● CCID flag: a memory-mapped flag, read-only by the software

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

444

HSM

chip

debug module

authentication module

send encrypted
signed bytes
to DM input register

the authentication process

OTP
CSK (public key)
DPK (public key)

RISC-V
core

CCID register

CCID ok

core reset
is triggered

output register

input register input register

output register

PC

IDE probe

PC

CSK signing
key

signing
tool

data signed
data

the authenticated data are
prepared off-line

AES
rand

(signed
data)

send the CCID

secure
startup

check if CCID ok is
enabled

if enabled, loop with the
PC for sending/receiving data

E
DPK

(rand)E
DPK

(rand)

decrypt the bytes received in the TAP
registers

check the ECDSA signature using the CSK

if everything is ok, informs the AM

the secure debug session can start

signed
data

comparison
with CCID

memory-mapped shadow TAP registers

auth
register

dm-auth
register

the chip is started, the debug signal is
kept disabled (but not locked)

DPK
private

key

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

555

1. there is a dedicated public keypair, DPK (Debug public keypair)
a. the public key value is stored in the chip’s OTP
b. the private key value could be stored in the host PC or could be in the probe or in a HSM

2. instead of only sending the ready information to the host, the chip performs a random number generation and send this
number, encrypted with DPK (public key)

3. the host decrypts the received data thanks to the DPK private key and extracts the random value
4. the host encrypts the signed data with a AES using the random value as the encryption key
5. the chip decrypts the encrypted data with the random value and checks the signed data

This exchange is dynamic because of the random value, so a replay attack is not possible

summary

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

666

• the solution innovates in using the firmware and the core to manage the security: there is no dedicated IP block, attached
to the debug/authentication modules

• the purpose is to have these modules and the hardware state machine as simple as possible and as flexible as possible

• the enabling is under the customer control, thanks to cryptography and the CSK

• there is a high level of customization and granularity, regarding the authentication means (customer level, chip level)
– CCID and signed data can contain P/N, S/N, or any other customer information useful for limiting the risk

• there is no embedded secret, so no risk for extracting and re-using this value

• the solution is RISC-V-debug spec-compliant

• the solution is more secure than 1-nothing, 2-a password-based mechanism

• the solution is not a simple challenge-response, it is a complete protocol that establishes a secure channel over the debug
interface

secure debug proposal: conclusion and benefits

CONFIDENTIAL – COPYRIGHT 2021 SIFIVE. ALL RIGHTS RESERVED.

fo
r R

ISC
-V

 W
eek

777

PC

secure debug proposal: generic scenario

PC

IDE probe

Data preparation:
● the data to be transferred are prepared off-line, using a PC tool connected to the signing

key, (optionally customized with the chip S/N for a better chip targeting)
● the data and their signature can be stored within the probe or stay on the PC (they’re not

sensitive as they don’t contain any secret value)

chip

signing
key

signing
tool

data signed
data

● CCID: Customer/Chip Identification: 128-bit magic, unique, random word
● IDE: integrated development environment
● DM: debug module
● AM: authentication module
● CCID flag: a memory-mapped flag, read-only by the software

debug secure activation:
1. the chip is started, the debug signal is kept disabled (but not locked)
2. the CCID identification pattern is sent by the probe to the chip
3. the debug module transfers it to the authentication module
4. the AM sets the CCID-ok flag if the CCID is ok, otherwise lock the debug

signal in disabled state and exit
5. the AM resets the core
6. the Secure Startup code detects the CCID-ok flag and starts the secure

debug routine
7. the Secure Startup performs the host authentication process and

validates the signed data
8. if successful, the Secure Startup informs the AM
9. the AM instructs the DM to enable the debug

HSM

