ControlPULP: A Multi-Core RISC-V Power Controller for HPC Processors

Alessandro Ottaviano\(^1\), Robert Balas\(^1\), Giovanni Bambini\(^2\), Davide Rossi\(^2\), Luca Benini\(^1,2\), Andrea Bartolini\(^2\)

\(^1\)IIS, ETH Zurich; \(^2\)DEI, University Of Bologna;

1 Why an integrated multi-core Power Controller?

- Integrated **Power Controller Systems (PCS)** are key elements for governing the power consumption of modern HPC servers\(^1\).
- RISC-V lacks a reference design to conduct on-chip power management.
- More scalable and flexible PCS architectures are required to support advanced MIMO control algorithms and track PVT variability than single-core SoA solutions\(^2\).

2 The ControlPULP platform

- **Scalable architecture**: multi-core cluster with private FPUs, DMA for PVT sensor data acquisition, low-latency PLIC interrupt controller.
- **Power management interface**: AVSBus/PMBus for off-chip VRMs interaction, ARM SCMI for on-chip OS interaction.

3 The Power Control Firmware

- **Per-core** power regulation.
- Relies on industry-grade Real-Time OS, FreeRTOS.
- **Periodic Control Task (PCT, 2 kHz)** and **Fast Power Control Task** (FPCT, 8 kHz) tackle OS and BMC operating point and power budget requests respectively.
- Compares favorably with SoA and open standard FW, IBM OCC (6% more precise setpoint tracking on heavy workloads).

4 Evaluation

- RTL Cycle-accurate simulation framework.
- PCF acceleration leads to overall **4.9x speedup** with multi-core cluster execution and 2-D DMA-based PVT registers data acquisition against single-core, non-DMA based execution.

5 Conclusion

- The first fully open-source (HW/SW) RISC-V parallel PCS with configurable number of cores and interfaces.
- Designed to track the computational requirements of current and future HPC processors.

pulp-platform.org pulp-platform @pulp_platform aottaviano@iis.ee.ethz.ch