
RISC-V Virtualization for a CVA6-based SoC

Bruno Sá ∗, Luca Valente †, José Martins ∗, Davide Rossi †, Luca Benini † ‡, Sandro Pinto ∗
∗ Centro Algoritmi - University of Minho DEI † DEI, University of Bologna, Italy ‡ IIS lab, ETH Zurich, Switzerland

bruno.sa@algoritmi.uminho.pt, luca.valente@unibo.it, jose.martins@dei.uminho.pt,
davide.rossi@unibo.it, lbenini@iis.ee.ethz.ch, sandro.pinto@dei.uminho.pt

Abstract—In this work, we describe the implementation of
the latest version of the RISC-V Hypervisor extension (v1.0)
specification in a RISC-V CVA6-based (64-bit) SoC. We also
report the results of performing an extensive evaluation on the
current design and we share our experience about the design
space exploration for a few microarchitectural optimizations to
the memory subsystem. To complete, we have also enhanced the
timer infrastructure by implementing the privileged timer Sstc
extension. All these efforts we conducted in an attempt to improve
performance without compromising area and power.

I. INTRODUCTION AND CONTEXTUALIZATION

In the past, embedded systems were typically built of
sparse components, physically isolated from each other, with
a specific purpose and low computational power. Nowadays,
embedded systems are becoming more complex, with software
stacks steadily targeting heterogeneous multicore platforms
with characteristics typically encountered in general-purpose
systems and endowed with domain-specific accelerators. In
this sense, virtualization has been playing a major role in
the embedded industry and has been seen as a key enabling
technology to consolidate and isolate various systems with
different levels of critically - a.k.a. mixed-critically systems
(MCS) - into the same hardware platform [1].

This work reports the architectural and microarchitec-
tural implementation of the hardware virtualization support
in RISC-V CVA6-based [2] (64-bit) SoC, in compliance with
the RISC-V Hypervisor extension 1.0. We also performed an
extensive evaluation and describe a set of optimizations to the
memory and timer subsystems to enhance performance. The
ultimate goal of the project is to develop a fully open-sourced
RISC-V-based SoC architecture with virtualization support
(at the core and system level) and accompanying software
stack for adoption on a broad set of embedded and MCS
applications, e.g., drones.

II. PROJECT STATUS

The project started in May 2021 and about six months
later we had already completed the mandatory part of the
RISC-V Hypervisor extension specification. By that time, we
started to complement the design with some optional features
of H-extension, e.g. support for VMIDs in the memory man-
agement unit (MMU). Once we had a stable implementation,
we focus our efforts on the evaluation and identification of
performance bottlenecks in the design and possible solutions
to mitigate them. As expected, we identified two subsystems
as the major sources of performance degradation: (i) MMU
subsystem, naturally due to the nested translation, and (ii) timer
subsystem, mainly due to the trap and emulation burden while
multiplexing timer access to other privilege modes (since the

timer is only accessible in machine mode). For the MiBench
automotive suite, we observed an average relative performance
overhead of 8%, with 14% for the susanc-small benchmark.
After careful consideration, we proposed different solutions
to tackle the overhead caused by the nested MMU and the
timer emulation, e.g. introducing a dedicated G-Stage TLB
(G-TLB) to intermediate translations on the Page Table Walker
(PTW) and implementing the recent Sstc extension proposal,
which extends the timer facility to the HS- and VS-modes. For
reference, the addition of the G-TLB has reduced the observed
worst case relative performance overhead by approx. 25%, at
the cost of an increase of approx. 1.5% of the hardware.

The validation and evaluation processes were carried out
during all the development stages using: i) the Verilator
RTL simulator tool and ii) an FPGA prototyping. We also
conducted the PPA analysys targeting Global Foundries 22
nanometer FDSOI technology, resulting the hardware virtu-
alization support in an 8.2% area increase. The software used
to achieve fully-functional validation encompassed: (i) an ad-
hoc baremetal framework; (ii) the nested MMU test-suite of
the Xvisor white-box framework; and (iii) multiple hypervisors
which already leverage the RISC-V Hypervisor extension, i.e.
Bao [3], Xvisor, and KVM.

III. CONCLUSION AND NEXT STEPS

The project is still in is preliminary stages and, for now,
our focus has been at the hart level. Nevertheless, there is still
much work to be done at the system level to design a secure
and fully virtualizable platform. For example, the current
design provides only memory virtualization and protection at
the core level which means, DMA capable devices can access
memory freely. To tackle this, we plan to augment the SoC
with an IOPMP and IOMMU. Furthermore, the current inter-
rupt controller, i.e. PLIC, has no virtualization-awareness and
is now being replaced by the Advanced Interrupt Architecture
(AIA) [4].

REFERENCES

[1] B. Sa, J. Martins, and S. E. S. Pinto, “A First Look at RISC-V Virtual-
ization from an Embedded Systems Perspective,” IEEE Transactions on
Computers, pp. 1–1, 2021.

[2] F. Zaruba and L. Benini, “The cost of application-class processing:
Energy and performance analysis of a linux-ready 1.7-ghz 64-bit risc-v
core in 22-nm fdsoi technology,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 11, pp. 2629–2640, 2019.

[3] J. Martins, A. Tavares, M. Solieri, M. Bertogna, and S. Pinto, “Bao:
A Lightweight Static Partitioning Hypervisor for Modern Multi-Core
Embedded Systems,” in Workshop on NG-RES, vol. 77, 2020.

[4] “RISC-V Advanced Interrupt Architecture (AIA),” RISC-V, Mar. 2022,
available online at: https://github.com/riscv/riscv-aia, last accessed on
29.03.2022.


