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Performance results

Introduction

To enable high performance and energy efficiency, embedded heterogeneous SoCs mandate the on-chip " Application performance — How does our solution compare to alternative platforms?

integration of general-purpose processors and a plethora of application-specific hardware accelerators in a so-
called accelerator-rich paradigm. 0 Goal - Comparison of overlay-based and platform applications on a Xilinx ZU9EG MPSoC.

The design and testing of the whole system are costly and time-consuming, motivating the need for innovative 0 Algorithm - HW/SW implementations of a matrix multiplication (AB) kernel.
automated hardware design flows.

0 SW reference - Up to 4.08x speedup compared to execution on the host core.

Modelling the accelerator interaction is a non-straightforward and challenging task.

0 HW reference - Comparison to Xilinx HLS flow demonstrates comparable performance of accelerated

applications.
Motivation Application performance
System-level design (SLD) — To streamline the design, integration and evaluation of accelerator-rich systems 10000.06 Comparison between overlay and reference platforms
employing agile and reliable methodologies. m 1869.4 1931.8

Design space exploration (DSE) — To explore the design space and find optimal HW/SW implementations to
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Accelerator design — Need for more automated design flows (e.g. HLS). 10.00 I
1.00
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"  FPGA overlay — Hardware abstraction layer that hides the HW details of the underlying fabric (ASIC, FPGA),
thus simplifying system-level design.
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" Accelerator-rich system evaluation — Shared memory bandwidth and heterogeneous access patterns are

= Accelerator wrapper — Communication and control protocol for hardware accelerators in the form of a constraining resources in the scalability of highly heterogeneous and dense accelerator-rich systems.

hardware IP. to Peripheral 0  Goal — Performance characterization using multiple synthetic accelerators, or traffic generators (TGs).
Interconnect
/ LfiEslifﬁc \ ‘ A 0 Implemented system — Instantiation of a system with a single cluster that is enriched with 16 TGs.
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0 Interaction with L1 memory — Cluster bandwidth reduces by 2.6x running heterogeneous loads, with a
5.2X improvement over the worst-case scenario.
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"  Application modelling — Strong decoupling in designing the wrapper and its accelerator engine (HLS, third-
party, etc.).

0 Interaction with L2 memory — Another constraint comes from sequential DMA transfers. According to
the transferred data payload, system bandwidth further reduces from 32.7x up to 192x even with
homogeneous access patterns.

"  Wrapper generation — Template-based generation of wrapper resources is fully automated and reliable.
Application requirements are specified through a Python interface.

®  System generation — Generation of a full-custom SoC design to meet the application requirements. Different
strategies are to interconnect and orchestrate the accelerator wrappers, increasing the DSE region. Performance roofs

"  Verification and evaluation — Full support for FPGA deployment and RTL simulation. Ncl=1 Nacc=16 Ntcdm,banks=16 » Meas- L1 (Hom)

“ 16.00 .y Iy
Q Meas - L1 (Het)
"  Prototyping — Not limited to a specific fabric target: both ASIC and FPGA are good candidates! - . & o Meas-L1(Worst)
2 — ° ® Meas-L2 (P=512B)
& 6 e Meas- L2 (P=256B)
2 } Meas - L2 (P=128B)
Area results T-¥ Meas - L2 (P=64)
.Fe 9 - — Model - L1 (Ideal)
Overlay cluster cost — The less impacting the overlay, the larger the area for acceleration. O — Model-L1 {Hom)
o Model - L1 (Het)
] ] ] ] o O 100 —— Model - L1 (Worst)
0  Goal - Resource characterization of a set of (empty) cluster configurations on a Xilinx ZU9EG MPSoC. e Loo 10.00 —— Model - L2 (P=512B)
0 Result - Actual implementation (arch. D) costs: LUT =~ 20%, FF ~ 12%, BRAM = 3.8% and DSP ~ 0%. Operational Intensity (OPs/Byte)
Overlay cluster utilization Overlay cluster utilization O Multi-cluster scaling — To solve the bottleneck is necessary to scale the number of clusters and
Lookup tables (LUT) Flip flops (FF) distribute the accelerators according to the application requirements.
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oo0 [N 10.00 0 Design space exploration — Automated search of the optimal working points that fulfill application
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Architecture Architecture =
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50.00 requirements is a goal of our methodology.
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CLIT A plethora of different
accelerator-rich implementations
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