
Agile Design Methodology for Accelerator-Rich Cluster-based RISC-V SoC
Gianluca Bellocchi¹, Alessandro Capotondi¹, Luca Benini² and Andrea Marongiu¹

¹University of Modena and Reggio Emilia

²University of Bologna - ETH Zürich

▪ Overlay cluster cost – The less impacting the overlay, the larger the area for acceleration.

□ Goal - Resource characterization of a set of (empty) cluster configurations on a Xilinx ZU9EG MPSoC.

□ Result - Actual implementation (arch. D) costs: LUT ≈ 20%, FF ≈ 12%, BRAM ≈ 3.8% and DSP ≈ 0%.

Area results

▪ To enable high performance and energy efficiency, embedded heterogeneous SoCs mandate the on-chip
integration of general-purpose processors and a plethora of application-specific hardware accelerators in a so-
called accelerator-rich paradigm.

▪ The design and testing of the whole system are costly and time-consuming, motivating the need for innovative
automated hardware design flows.

▪ Modelling the accelerator interaction is a non-straightforward and challenging task.

Introduction

▪ System-level design (SLD) – To streamline the design, integration and evaluation of accelerator-rich systems
employing agile and reliable methodologies.

▪ Design space exploration (DSE) – To explore the design space and find optimal HW/SW implementations to
meet the wide range of application-level requirements.

▪ Accelerator design – Need for more automated design flows (e.g. HLS).

Motivation

▪ G. Bellocchi, A. Capotondi, F. n , A. ng u 2021 , “A R S -V-b FPGA Ov l y S pl fy E b A l pl y n ”.

▪ B. Boroujerdian, Y. Jing, A. Kumar, L. Subramanian, L. Yen, V. Venkatesan, A. Jindal, R. Shearer, V. J. Reddi, 2022 , “FARS : F b k AR Sy nv g f Ag l
Domain-Specific System-on- p Expl n”.

▪ D. Giri, K.-L. Chiu, G. Eichler, P. Mantovani, L. P. Carloni 2021 , “A l n g n f Op n-S u S gn”.

▪ S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, V. J. Reddi (2021), “Robomorphic Computing: A Design Methodology for Domain-Specific Accelerators
P z by R b p l gy”.

▪ Q. Huang, C. Yarp, S. Karandikar, N. Pemberton, B. Brock, L. Ma, G. Dai, R. Quitt, K. Asanovic, J. Wawrzynek (2019), “ n fug : Ev lu ng full-system HLS-generated
heterogeneous accelerator SoCs using FPGA-A l n”.

▪ A. Kurth, A. Capotondi, P. Vogel, L. Benini, A. ng u 2018 , “HERO: An p n-source research platform for HW/SW exploration of heterogeneous manycore
 y ”.

▪ S. W ll , A. W n, . P n 2008 , “R fl n : An n g ful V u l P f n l f Fl ng-Point Programs and ul A u ”.

References

▪ This work has been supported by the FAR 2020 “ n g n An ly " fun . authors would
also like to thanks the EU commission for funding the ECSEL-JU COMP4DRONES project (No. 826610).

Acknowledgments

Fondo di Ateneo per

la Ricerca FAR2020

▪ FPGA overlay – Hardware abstraction layer that hides the HW details of the underlying fabric (ASIC, FPGA),
thus simplifying system-level design.

▪ Accelerator wrapper – Communication and control protocol for hardware accelerators in the form of a
hardware IP.

▪ Application modelling – Strong decoupling in designing the wrapper and its accelerator engine (HLS, third-
party, etc.).

▪ Wrapper generation – Template-based generation of wrapper resources is fully automated and reliable.
Application requirements are specified through a Python interface.

▪ System generation – Generation of a full-custom SoC design to meet the application requirements. Different
strategies are to interconnect and orchestrate the accelerator wrappers, increasing the DSE region.

▪ Verification and evaluation – Full support for FPGA deployment and RTL simulation.

▪ Prototyping – Not limited to a specific fabric target: both ASIC and FPGA are good candidates!

Methodology

TCDM

Homogeneous execution

…

Acc 0

Acc 1

Acc 2

Acc 15

TCDM

Heterogeneous execution

Access stride = Accelerator IDX

TCDM

Worst-case scenario

Access stride = Number of banks
…

Acc 0

Acc 1

Acc 2

Acc 15

…

Acc 0

Acc 1

Acc 2

Acc 15

OverlayXilinxHost

▪ Application performance – How does our solution compare to alternative platforms?

□ Goal - Comparison of overlay-based and platform applications on a Xilinx ZU9EG MPSoC.

□ Algorithm - HW/SW implementations of a matrix multiplication (AB) kernel.

□ SW reference - Up to 4.08x speedup compared to execution on the host core.

□ HW reference - Comparison to Xilinx HLS flow demonstrates comparable performance of accelerated
applications.

▪ Accelerator-rich system evaluation – Shared memory bandwidth and heterogeneous access patterns are
constraining resources in the scalability of highly heterogeneous and dense accelerator-rich systems.

□ Goal – Performance characterization using multiple synthetic accelerators, or traffic generators (TGs).

□ Implemented system – Instantiation of a system with a single cluster that is enriched with 16 TGs.

□ Interaction with L1 memory – Cluster bandwidth reduces by 2.6x running heterogeneous loads, with a
5.2x improvement over the worst-case scenario.

□ Interaction with L2 memory – Another constraint comes from sequential DMA transfers. According to
the transferred data payload, system bandwidth further reduces from 32.7x up to 192x even with
homogeneous access patterns.

□ Multi-cluster scaling – To solve the bottleneck is necessary to scale the number of clusters and
distribute the accelerators according to the application requirements.

□ Design space exploration – Automated search of the optimal working points that fulfill application
requirements is a goal of our methodology.

Application
requirements

A plethora of different
accelerator-rich implementations

Alternative HW/SW solutions
are profiled during DSE with the
goal of searching for the optimal

trade-off for the target application

Full-stack generation of custom accelerator-rich SoC tailored to the application needs

Performance results

