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▪ Overlay cluster cost – The less impacting the overlay, the larger the area for acceleration.

□ Goal - Resource characterization of a set of (empty) cluster configurations on a Xilinx ZU9EG MPSoC.

□ Result - Actual implementation (arch. D) costs: LUT ≈ 20%, FF ≈ 12%, BRAM ≈ 3.8% and DSP ≈ 0%.

    

    

    

    

    

     

     

     

            

                           
               

           

         

          

        

       

         

    

     

     

     

     

     

     

     

     

            

                           
                   

           

         

          

        

       

         

Area results

▪ To enable high performance and energy efficiency, embedded heterogeneous SoCs mandate the on-chip 
integration of general-purpose processors and a plethora of application-specific hardware accelerators in a so-
called accelerator-rich paradigm.

▪ The design and testing of the whole system are costly and time-consuming, motivating the need for innovative 
automated hardware design flows.

▪ Modelling the accelerator interaction is a non-straightforward and challenging task.

Introduction

▪ System-level design (SLD) – To streamline the design, integration and evaluation of accelerator-rich systems 
employing agile and reliable methodologies.

▪ Design space exploration (DSE) – To explore the design space and find optimal HW/SW implementations to 
meet the wide range of application-level requirements.

▪ Accelerator design – Need for more automated design flows (e.g. HLS).
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▪ FPGA overlay – Hardware abstraction layer that hides the HW details of the underlying fabric (ASIC, FPGA), 
thus simplifying system-level design. 

▪ Accelerator wrapper – Communication and control protocol for hardware accelerators in the form of a 
hardware IP.

▪ Application modelling – Strong decoupling in designing the wrapper and its accelerator engine (HLS, third-
party, etc.).

▪ Wrapper generation – Template-based generation of wrapper resources is fully automated and reliable. 
Application requirements are specified through a Python interface.

▪ System generation – Generation of a full-custom SoC design to meet the application requirements. Different 
strategies are to interconnect and orchestrate the accelerator wrappers, increasing the DSE region. 

▪ Verification and evaluation – Full support for FPGA deployment and RTL simulation.

▪ Prototyping – Not limited to a specific fabric target: both ASIC and FPGA are good candidates!

Methodology
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▪ Application performance – How does our solution compare to alternative platforms?

□ Goal - Comparison of overlay-based and platform applications on a Xilinx ZU9EG MPSoC.

□ Algorithm - HW/SW implementations of a matrix multiplication (AB) kernel.

□ SW reference - Up to 4.08x speedup compared to execution on the host core.

□ HW reference - Comparison to Xilinx HLS flow demonstrates comparable performance of accelerated 
applications.

▪ Accelerator-rich system evaluation – Shared memory bandwidth and heterogeneous access patterns are 
constraining resources in the scalability of highly heterogeneous and dense accelerator-rich systems.

□ Goal – Performance characterization using multiple synthetic accelerators, or traffic generators (TGs).

□ Implemented system – Instantiation of a system with a single cluster that is enriched with 16 TGs. 

□ Interaction with L1 memory – Cluster bandwidth reduces by 2.6x running heterogeneous loads, with a 
5.2x improvement over the worst-case scenario.

□ Interaction with L2 memory – Another constraint comes from sequential DMA transfers. According to 
the transferred data payload, system bandwidth further reduces from 32.7x up to 192x even with 
homogeneous access patterns.

□ Multi-cluster scaling – To solve the bottleneck is necessary to scale the number of clusters and 
distribute the accelerators according to the application requirements.

□ Design space exploration – Automated search of the optimal working points that fulfill application 
requirements is a goal of our methodology.

Application
requirements

 

 

 

 

 

  

  

  

      

                    

                   
                            

     

   

   

   

   

    

    

    

     

     

     

                    

 

 

 

 

 

  

  

  

      

                    

                   
                            

     

   

   

   

   

    

    

    

     

     

     

                    

 

 

 

 

 

  

  

  

      

                    

                   
                            

     

   

   

   

   

    

    

    

     

     

     

                    

 

 

 

 

 

  

  

  

      

                    

                   
                            

     

   

   

   

   

    

    

    

     

     

     

                   

 

 

 

 

 

  

  

  

      

                    

                   
                            

     

   

   

   

   

    

    

    

     

     

     

                    

A plethora of different 
accelerator-rich implementations

Alternative HW/SW solutions 
are profiled during DSE with the 
goal of searching for the optimal 

trade-off for the target application

Full-stack generation of custom accelerator-rich SoC tailored to the application needs  

Performance results


