
The MEEP project has received funding from the European High-Performance Computing Joint Undertaking (JU)

under grant agreement No 946002. The JU receives support from the European Union’s Horizon 2020 research

and innovation programme and Spain, Croatia, Turkey.

A RISC-V VPU for Very Long

and Sparse Vectors

VecProM: Vector Processor, under MEEP Project

• Vector Processing Unit (VPU) -> reduced instruction memory, reduced

address translations and deeper pipelines -> high compute performance

Challenges:

• Very long vectors? -> Limitation of register space on Vector Register Files

(VRF) -> energy constraints

• Energy-efficiency in sparse-vector computations? -> not cache-friendly

References

• Introduced minimal changes to the existing data path of baseline, thus

retaining functionality and benefits of the baseline.

• The modes of operation mainly differ in memory path

• Provides flexibility to switch between the modes, based on the

operand-type

• Accelerated Compute and Memory

Engine (ACME) -> MEEP[1] project at BSC

• ACME accelerator core consists:

 A RISC-V scalar core

 A RISC-V VPU (VecProM)

 Two systolic arrays

• VecProM is a modified version of a

baseline RISC-V VPU [2] -> support for

very long vectors and sparse vectors

Two operand-dependent modes:

Mode_SD:

• Suitable for short dense vectors, i.e., VL fits on the VRF

• Instructions, operands and results over OVI

Micro-engines and Mode_LDSp

[1] Fell, A., Mazure, D. J., Garcia, T. C., Perez, B., Teruel, X., Wilson, P., & Davis, J. D. (2021). The MareNostrum Experimental

Exascale Platform (MEEP). Supercomputing Frontiers and Innovations, 8(1), 62–81. https://doi.org/10.14529/jsfi210105

[2] https://www.bsc.es/research-and-development/projects/epi-european-processor-initative-epi

https://meep-project.eu/

VecProM operation

Fig. 2. VecProM interfaced with a scalar core and LVRF

Fig. 3. Configuration and functioning of Micro-engines

VL in CSR > short_vector_length ?

Scalar Core offloads the vector instructions to VecProM over the OVI
interface, Load and store instructions are handled by MCPU [1]

No -> Mode_SD

Yes -> Mode_LDSp

Vector lanes collect status of all the source registers in
LVRF.

All source registers ready in LVRF?

Vec_reg_ready
(ABP
scoreboard
driver)

Configure MEs with source register address, valid bits,
element size, vector length (over APB ME config)

Yes

Asserting start bit -> ME loads a set of operand data words
from LVRF to VRF. The vector lanes process it, and MEs

store the result back to LVRF

Yes

End of operation

Start

Hardware strip-mining
The whole vector operands are processed?

Gopinath Mahale, Karim Charfi, Tejas Limbasiya, Teresa Cervero, John Davis
{gopinath.mahale, karim.charfi, tejas.limbasiya, teresa.cervero, john.davis}@bsc.es
Barcelona Supercomputing Center (BSC), Barcelona, Spain

Fig. 4. Sequence of events during instruction execution

DMA Registers

RISC V scalar
core

16 lane
VecProM

NN Systolic
array

Video Systolic
array

ACME accelerator core

OVI

OVI

OVI

• Disaggregation of memory and arithmetic instruction execution

-> Improvement in performance and energy savings

• A specialized high-bandwidth memory path -> bypasses the cache

hierarchy and connects VecProM to a scratchpad memory, termed Long

Vector Register File (LVRF)

• LVRF -> Acts as virtual VRF for the physical VRF

-> Maintains 32 vector registers as per the RISC-V ISA specifications.

• Loads and stores on LVRF -> Micro-engines (MEs) -> On-the-fly

configuration

Mode_LDSp:

• Suitable for very long dense vectors and sparse vector operands, which

do not benefit much from cache hierarchy

• Instructions over OVI, operand and results stored in LVRF, accessed

through Micro-engines

• Hardware strip-mining

• MCPU [1] gathers non-zero elements of sparse data -> packed as dense

data -> stored in LVRF

Fig 1. ACME accelerator core

Motivation

MEEP Partners:

https://doi.org/10.14529/jsfi210105

