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Fault Injection Results
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Operating Principle

Features

Challenge
Safety critical errors in digital microprocessors increase with the reduction of minimum

feature size and voltage margins. For that reason, Functional Safety in microprocessor cores

through Fault Tolerance (FT) architecture techniques, is a key requirement in several

embedded application domains, especially when based on commercial-off-the-shelf

(COTS) hardware components. Yet, classical Triple Modular Redundancy (TMR)

protection against faults occurring in any bit of the core may be oversized for many

applications, especially for low-cost implementations.

While being a revolution in embedded system processor cores, RISC-V is now receiving

increased interest for space and safety applications. In this work we illustrate a novel

approach for developing robust Fault Tolerant RISC-V processor cores, using an

Interleaved-Multi-Threading (IMT) architecture as a basis for Radiation Hardening

technique. IMT cores are interesting for low-cost embedded systems, because they reach

relatively high performance by hiding data dependency stalls and providing a fence between

the read access and the write access to the register file. Contrary to FT approaches based on

Simultaneous Multi-Threading (SMT) or Multi-Cores (MC) schemes [4], the proposed

approach exploits the IMT scheme to merge spatial redundancy with temporal redundancy,

leveraging specific logic structures to deal with the fact that the instruction results are not

simultaneously available.

The basic concept of our work is the intrinsic FT capability of an IMT core

running three threads, each having its own Register File (RF), Program Counter

(PC) and Control/Status Registers (CSRs) incorporating spatial redundancy; yet

sharing the pipeline logic and registers to execute the same instructions in

different clock cycles, thus providing temporal redundancy.

We started from an open-source RISC-V soft core family named Klessydra-T[2],

developed at the Digital System’s Lab group at Sapienza University of Rome,

with three or more hardware interleaved threads in a round robin fashion on a

four-stage in-order pipeline, fully compatible with the PULPino open-source

microcontroller platform [3].

Executing the instructions of identical threads on the same hardware in different

clock cycles, protects the architecture from Single Event Upset (SEU) in

sequential logic and from Single Event Transient (SET) faults that may occur in

combinational logic.

Operating Mode Examples

Conclusions
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The original IMT architecture natively offers

spatial redundancy, by means of replicated

register file, PC and Control/Status Registers

(CSRs) to maintain the states of the three threads

being executed. Voting among the logic signals

produced by three identical threads could be

introduced in several points of the pipeline

microarchitecture. We call the proposed paradigm

Buffered TMR, defining precise architecture

modifications with general validity. The values

produced by three harts in selected architectural

units (PC, Register File, Write Back unit and

Load Store Unit) are buffered in dedicated

registers and voted at the end of each thread

instruction cycle, by performing an intrinsic TMR

protection and correct data retention.

In this work, we presented a way to use IMT processor core to achieve Fault Tolerant features. By following some specific steps precautions it is possible to add features

that are fully comparable with other fault protection mechanisms. The core behaviour appears like a single thread core, but it has performance of TMR core in his sphere

of replication (SOR) with less overhead because not all the signals in the pipeline needs to be protected with the buffered TMR solution.
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➢ The case of PC fault: In case of a fault, fore example on thread zero, it can

potentially jump to another wrong instruction (red color in picture), changing

the instruction flow among the subsequent cycles. The recovery mechanism

implies that during thread zero fetch state, a voting among the PC signals is

done, and the correct result is re-fetched in the next cycle, restoring the correct

instruction flow with only one cycle penalty.

➢ The case of RF&WB fault: The three RF works in parallel as single TMR

one, and each thread reads from it with voting mechanism. The results from

the threads are saved in the Write Back buffers and taken from there in case

of dependencies using Bypass logic. In case of a fault, for example on thread

two, the voting mechanism eliminates it completely

➢ The case of LS fault: Since the threads are exactly replicated, the Load/Store

unit should avoids performing replicated load-store pairs to the same location

or propagating any fault to the memory sub-system. Thread 2 and Thread 1

memory operations are converted into two buffered operations, by saving all

the related signals like address, data and control signals into dedicated

registers, giving to Thread 0 the task of doing the real load-store operation

with voted signals

The obtained RISC-V processor core, named Klessydra-fT03 [1], possesses FT

features briefly quoted in Table below and validated by an extensive Fault

Injection simulation campaign with Single-Event-Upset (SEU) faults targeting all

the most used register bits in the architecture (see figure below).

benchmarks Klessydra-T03 (Pe%) Klessydra-fT03 (Pe%)

FFT 62 % 13 %
FIR 60 % 10 %
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