
Part of the Intro Lecture on Computer Architecture (ERA) 

Part of the BB-KI Chips Project

Part of the Munich Quantum Valley Project (MQV)

Using the TUM Uncore Environment for RISC-V for Teaching, AI and Quantum Computing
Martin Schulz, Alexis Engelke and Carsten Trinitis

Abstract

RISC-V is not only a good match for innovative research, from AI to
Quantum Computing, but also for teaching and education. Both
research and teaching with RISC-V are frequently conducted on FPGAs,
as they offer a good trade-off between easy-to-implement simulations
and high performance.

We have developed a small and simple, yet flexible and easy to use
uncore environment to simplify the VHDL-based development of multi-
core RISC-V processors from scratch on FPGAs. It forms the foundation
for several activities at TUM, from core design in student labs, the
development of new AI platforms to the research on quantum control
processors.

Technical University of Munich
Department of Informatics

Chair for Computer Architecture and Parallel Systems

Supported by: In partnership with:

http://caps.in.tum.de/Contact: Martin Schulz, schulzm@in.tum.de

Use Case 1: Student Labs

The TUM Uncore Environment
Use Case 2: Environment for AI Chips 

Use Case 3: Quantum Control Processors

Reference: Michael Jungmair, Tobias Schmidt, Alexis Engelke, Armin E�enhofer, Felix Krayer, Jonas Lauer, 
Malte von Ehren, and Martin Schulz. 2021. A Flexible Uncore Infrastructure for RISC-V Core Development. In 
Proceedings of the Fi�h Workshop on Computer Architecture Research with RISC-V (CARRV 2021)

A Flexible Uncore Infrastructure for RISC-V for
Teaching, AI and Quantum Computing

Martin Schulz
Technical University of Munich
Garching near Munich, Germany

schulzm@in.tum.de

Alexis Engelke
Technical University of Munich
Garching near Munich, Germany

alexis.engelke@tum.de

Carsten Trinitis
Technical University of Munich
Garching near Munich, Germany

schulzm@in.tum.de

1 Problem Statement
The RISC-V ISA [? ] is a rapidly evolving, open, and �exible
architecture suitable for developing new and possibly more
specialized architecture extensions. Based on these proper-
ties, it is not only a good match for innovative research, from
AI to Quantum Computing, but also for teaching and educa-
tion. Both research and teaching with RISC-V are frequently
conducted on FPGAs, as they o�er a good trade-o� between
easy-to-implement simulations and high performance.
However, the development of processor cores on FPGAs

comes with a rather high entry barrier: the required uncore
logic to connect, feed, test and use a newly designed core
is non-trivial and requires signi�cant work. This includes
proper con�gurations of the FPGA attached DDR memory,
the connection to I/O devices (which is often hardware-
speci�c), the need for a multi-core capable cache hierarchy
with cache coherency, and the support of the matching mem-
ory consistency model; all hardware-speci�c and non-trivial
issues that need to be addressed for each new core design
project. Further, each core design project needs to communi-
cate with the FPGA host to enable easy debugging and per-
formance analysis. As a consequence, a signi�cant amount
of engineering overhead must be invested, detracting from
the actual research or education targets.

2 The TUM Uncore System for RISC-V
To address these issues and to a �exible and modular uncore
infrastructure to simplify the VHDL-based development of
multi-core RISC-V processors from scratch on FPGAs [? ].
Our infrastructure provides a cache hierarchy to support
multiple cores, atomic memory operations, and a generic
interface for accessing memory and I/O components. To ac-
count for comparably low memory latency resulting from
the lower clock rate of the FPGA itself, the access latency to
the caches and the main memory is con�gurable. To achieve
a �exible design we split the processor infrastructure into
three layers (c.f. Figure 1): (1) a layer for memory and I/O
devices, (2) an optional cache layer, and (3) the interface to
the processor cores themselves. We use a bus-based commu-
nication protocol between the three layers, allowing us to
replace each layer independently of the others. This design
facilitates the development of new processor cores and the
evaluation of di�erent memory hierarchies with multi-core
support. Furthermore, we can migrate the system quickly to

RISC-V core RISC-V core (3) Computing
Cores

L1 cache L1 cache

L2 cache

(2) Cache Layer

Memory devices I/O devices (1) Memory and
I/O devices

FPGA Resources (RAM, Pins)

Figure 1. Uncore Infrastructure

other hardware platforms or emulate it on standard CPUs.
All components are implemented in VHDL and new projects
include the �les to make use of our uncore infrastructure.

3 Use Cases
In the following we describe three di�erent use cases in
which

3.1 Basic Architecture Education
3.2 AI Teaching Lab
4 Quantum Control Processors
5 Conclusions
References
[] Michael Jungmair, Tobias Schmidt, Alexis Engelke, Armin Ettenhofer,

Felix Krayer, Jonas Lauer, Malte von Ehren, and Martin Schulz. 2021.
A Flexible Uncore Infrastructure for RISC-V Core Development. In
Proceedings of the Fifth Workshop on Computer Architecture Research
with RISC-V (CARRV 2021).

[] RISC-V Foundation. 2019. The RISC-V Instruction Set Manual, Volume I:
User-Level ISA, Document Version 20190608-Base-Rati�ed.

1

Layers of the TUM Uncore Environment
• Memory and I/O devices
• Optional cache layer(s) with coherence functionality
• Interface to compute cores

Connected via a bus-based communication protocol

Supported Functionality
• Support for multiple RISC-V cores
• Atomic operations to support multi-core communication
• Generic memory interface
• Configurable memory and cache latencies

Three RISC-V Designs, One Infrastructure
• Developed in student lab projects
• Focus: 2nd semester bachelor students
• Ability to focus on design and

not on the infrastructure

From Hardware Design to Chip Tape-Out
• New project to increase teaching of hardware designs
• Focus on AI accelerators
• Paired with RISC-V CPUs
• Target application: image processing for drones

Easier Ramp-Up with Uncore Support
• Integration of existing RISC-V designs
• Shared global memory 
• Easier testing and validation
• Focus on AI designs during development

Quantum Computers Need Conventional Control
• Interfaces with existing systems
• Laser/microwave (or similar) control
• Read-out and evaluation

New Concepts Needed to Drive Control
• New ISAs to encode quantum operations
• Goal: pairing with RISC-V designs
• Common substrate will support development

and use of new chip architecture
• Going beyond von-Neumann to support QPUs?

9

Michael Jungmair, Tobias Schmidt 2021

Case Studies

3-stage pipelined core

Program
Counter

Memory
Access

Instruction
Buffer

Instruction
DecodeBPT

Register File Integer
Compu-
tationALU

Mul

Div

Memory
Access

Register File

L1 Cache

core
infrastructure

Fetch

Store Load

1 2 3Instruction-Fetch and -Decode Execution Writeback

Out-of-order core

Program
Counter

Memory
Access

Instruction
Buffer

Instruction
Decode
BPT

Reorder
Buffer

Register
File

RS ALU

RS Mul

Load
Store
Buffer

CU
ALU

CU Mul

Memory
Access

L1 Cache

core
infrastructure

C
om

m
on

D
at

a
B
us

...
...

Size-optimized scalar core

Program
Counter

Instruction
Fetch

Instruction
Decode

Memory
Access

Register
File ALU Write

Back

Trap
Handling CSR

L1 Cache AMO
Unit

core
infrastructure

Same infrastructure, no changes to the underlying layers.

Introduction Uncore Infrastructure Case Studies Experiences Summary

Pipelined OoO Simple

http://caps.in.tum.de/
mailto:schulzm@in.tum.de

