
Pipeline Datapath Models from RISC-V based cores
Samira Ait Bensaid, Mihail Asavoae, Farhat Thabet and Mathieu Jan

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

if pc

Fetch

dec pc

dec inst

Write-Back

ex pc

ex alu op1

ex alu op2

RF

ex rs2 data

mem pc

mem alu out

mem rs2 data

wb wbdata

MemoryExecuteDecode

IM

DM

Rule

Rule

Rule

1

2

1

Fig. 1: RISC-V Sodor 5-stages pipeline datapath model.
Motivation. Certification of safety-critical systems requires

the use of timing analyses to estimate Worst-Case Execution
Times (WCET). These timing analyses reason about the exe-
cutions of a program on an underlying computer architecture.
WCET analyzers (such as [4], [7], [12]) use architecture
models, generally built by hand, and static analysis to estimate
these WCETs. Generating hardware models have mainly fo-
cused on functional verification of Verilog/VHDL designs ([6],
[8], [10], [11]) and not for such WCET analyses, except [14].
However, hardware designers tend to use higher-level and
more expressive languages, such as Chisel [3] or SpinalHDL
for instance. There is thus a need for a fully automated
construction of (abstract) datapath pipeline models from these
higher-level hardware construction languages.

Contributions. We currently design a custom FIRRTL [9]
pass to automate the construction of datapath pipeline models
from Chisel [3] HDL processor designs. This pass focuses on
the registers involved in the pipeline datapath, determines its
depth and generates a model of it (see Fig. 1 for an example).
We explore both the combinatorial and sequential logics of
a pipeline in order to extract dependency relations between
registers. Next, we assign a pipeline stage to the identified
registers using two different rules. Rule 1 relies on register
dependencies and takes into account forwarding mechanisms
within micro-architectures. Rule 2 relies on a heuristic by
taking advantage of a common practice of hardware designers
to simultaneously update registers of a same pipeline stage
within a same conditional block. This procedure is described
in more details in [5]. Specific abstractions can then be applied
to match input (timing) models used by WCET analyzers.

Results. The following table reports the effectiveness of our
pass on a set of in-order RISC-V processors, ranging from
3 to 5 pipline stages. The first column describes the code
size of each (datapath) pipeline, the next column presents
the number of registers (#Regs) and the last two columns
summarize the number of registers successfully placed by each
rule. For each processor, the depth of each pipeline is correctly

LOC #Regs Rule 1 Rule 2
RISC-V Mini [1] 241 15 5 10
Sodor [2] 646 48 34 14
KyogenRV [13] 4567 93 47 36

computed and Fig 1 illustrates a subset of the datapath pipeline
model of RISC-V Sodor. Starting from a given register located
in the fetch stage (e.g. if_pc), our pass assigns registers
dec_pc, ex_pc and mem_pc to respectively decode, execute
and memory pipeline stages thanks to rule 1. Then, it assigns
register dec_inst using rule 2, as it is updated in the same
context as dec_pc. The procedure is then recursively applied
to the next registers (ex_alu_op1, etc.) and identifies for-
warding mechanisms represented by the blue edges on Fig 1.

REFERENCES

[1] Risc-v mini. https://github.com/ucb-bar/riscv-mini,
[2] Risc-v sodor. https://github.com/ucb-bar/riscv-sodor,
[3] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis, R.,

Wawrzynek, J., Asanović, K.: Chisel: Constructing hardware in a scala
embedded language. In: DAC. p. 1216–1225 (2012)

[4] Ballabriga, C., Cassé, H., Rochange, C., Sainrat, P.: OTAWA: an open
toolbox for adaptive WCET analysis. In: SEUS (2010)

[5] Bensaid, S.A., Asavoae, M., Thabet, F., Jan, M.: WiP: Automatic
Construction of Pipeline Datapaths from High-Level HDL Code. In:
RTASS (2022), to appear.

[6] Charvát, L., Smrcka, A., Vojnar, T.: HADES: microprocessor hazard
analysis via formal verification of parameterized systems. In: MEMICS.
EPTCS, vol. 233, pp. 87–93 (2016)

[7] Hardy, D., Rouxel, B., Puaut, I.: The heptane static worst-case execution
time estimation tool. In: WCET. OASICS, vol. 57, pp. 8:1–8:12 (2017)

[8] Irfan, A., Cimatti, A., Griggio, A., Roveri, M., Sebastiani, R.: Ver-
ilog2SMV: A tool for word-level verification. In: DATE (2016)

[9] Izraelevitz, A.M., Koenig, J., Li, P., Lin, R., Wang, A., Magyar, A.,
Kim, D., Schmidt, C., Markley, C., Lawson, J., Bachrach, J.: Reusability
is FIRRTL ground: Hardware construction languages, compiler frame-
works, and transformations. In: ICCAD. pp. 209–216 (2017)

[10] Jain, H., Kroening, D., Sharygina, N., Clarke, E.: VCEGAR: Verilog
CounterExample Guided Abstraction Refinement. In: TACAS (2007)

[11] Lee, S., Sakallah, K.A.: Unbounded scalable verification based on
approximate property-directed reachability and datapath abstraction. In:
CAV. pp. 849–865 (2014)

[12] Li, X., Yun, L., Mitra, T., Roychoudhury, A.: Chronos: A timing analyzer
for embedded software. Sci. Comput. Program. 69(1-3), 56–67 (2007)

[13] Saitoh, A.: KyogenRV: simple 5-staged pipeline RISC-V.
https://github.com/panda5mt/KyogenRV,

[14] Schlickling, M., Pister, M.: A framework for static analysis of VHDL
code. In: WCET. OASICS, vol. 6 (2007)


