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Fig. 1: RISC-V Sodor 5-stages pipeline datapath model.
Motivation. Certification of safety-critical systems requires

the use of timing analyses to estimate Worst-Case Execution
Times (WCET). These timing analyses reason about the exe-
cutions of a program on an underlying computer architecture.
WCET analyzers (such as [4], [7], [12]) use architecture
models, generally built by hand, and static analysis to estimate
these WCETs. Generating hardware models have mainly fo-
cused on functional verification of Verilog/VHDL designs ([6],
[8], [10], [11]) and not for such WCET analyses, except [14].
However, hardware designers tend to use higher-level and
more expressive languages, such as Chisel [3] or SpinalHDL
for instance. There is thus a need for a fully automated
construction of (abstract) datapath pipeline models from these
higher-level hardware construction languages.

Contributions. We currently design a custom FIRRTL [9]
pass to automate the construction of datapath pipeline models
from Chisel [3] HDL processor designs. This pass focuses on
the registers involved in the pipeline datapath, determines its
depth and generates a model of it (see Fig. 1 for an example).
We explore both the combinatorial and sequential logics of
a pipeline in order to extract dependency relations between
registers. Next, we assign a pipeline stage to the identified
registers using two different rules. Rule 1 relies on register
dependencies and takes into account forwarding mechanisms
within micro-architectures. Rule 2 relies on a heuristic by
taking advantage of a common practice of hardware designers
to simultaneously update registers of a same pipeline stage
within a same conditional block. This procedure is described
in more details in [5]. Specific abstractions can then be applied
to match input (timing) models used by WCET analyzers.

Results. The following table reports the effectiveness of our
pass on a set of in-order RISC-V processors, ranging from
3 to 5 pipline stages. The first column describes the code
size of each (datapath) pipeline, the next column presents
the number of registers (#Regs) and the last two columns
summarize the number of registers successfully placed by each
rule. For each processor, the depth of each pipeline is correctly

LOC #Regs Rule 1 Rule 2
RISC-V Mini [1] 241 15 5 10
Sodor [2] 646 48 34 14
KyogenRV [13] 4567 93 47 36

computed and Fig 1 illustrates a subset of the datapath pipeline
model of RISC-V Sodor. Starting from a given register located
in the fetch stage (e.g. if_pc), our pass assigns registers
dec_pc, ex_pc and mem_pc to respectively decode, execute
and memory pipeline stages thanks to rule 1. Then, it assigns
register dec_inst using rule 2, as it is updated in the same
context as dec_pc. The procedure is then recursively applied
to the next registers (ex_alu_op1, etc.) and identifies for-
warding mechanisms represented by the blue edges on Fig 1.
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