
Comet: a RISC-V Core Synthesized from C++ Specifications

Simon Rokicki, Joseph Paturel, Olivier Sentieys

Univ Rennes, Inria, IRISA

Abstract—Designing the hardware of a processor core as well
as its verification flow from a single high-level specification
provides great advantages in terms of productivity and main-
tainability. In this work, we highlight the Comet RISC-V core
specified from a unique C++ model. The same code is used
to generate both the hardware target design through High-
Level Synthesis as well as a fast and cycle-accurate bit-accurate
simulator of the latter through software compilation. The object
oriented nature of C++ greatly improves the readability and
flexibility of the design description compared to classical HDL-
based implementations. Therefore, the processor model can easily
be modified, expanded and verified using standard software
development methodologies. Previous work demonstrated that
the core frequency and area of the generated hardware are
comparable to existing RTL implementations [1]. In this poster
we present the status and roadmap around Comet.

I. INTRODUCTION

Innovations in hardware architecture are leading to better
processors which can support the complex software applica-
tions being developed today. Similarly, software and program-
ming languages have made it easier to prototype, simulate and
even synthesize hardware, for example the creation of High-
Level Synthesis (HLS) tools. Standard development flows
for processor architecture are based around the development
and maintenance of a hardware model for synthesis (usually
at Register Transfer Level), and a software model (i.e. an
instruction-set simulator) to validate the applications that will
run on the design. Those two models have to be verified
independently. To cut down the complexity of the hardware
development in a processor design methodology, Comet intro-
duces the use of a single behavioral model of the simulator,
which is compiled into a cycle-accurate bit-accurate simulator
by standard compilers and also synthesized into a hardware
component through HLS. It is also possible to debug the
behavioral model at the C/C++ level and to simply validate the
behavior of the generated hardware through co-simulation and
standard software development tools. The design methodology
based on Comet is depicted in Figure 1.

Although high-level synthesis is making huge progress in
dealing with complex structures, how far can these tools
go? Can they be used to design something as complex as
a microprocessor? In particular how to specify such parallel
computing pipelines (e.g., core pipeline stages, cache hierar-
chy, communications with uncore components) with the HLS
technology and to demonstrate that there is a potential high
gain in design time, without jeopardizing performance and
cost.

II. CONTRIBUTIONS

In this work, we present the design of Comet, a five-stage
pipelined processor implementing the RISC-V Instruction Set

core.c

CompilerHLS

rtl.v
Accurate 

simulator

Hardware 

Toolchain

Software 

validation

HW/SW 

co-simulation

Fig. 1. Comet processor design flow.

Architecture (ISA). Comet is fully synthesized from a unique
C/C++ model using state-of-the-art HLS tools. Our results
show that, if the C/C++ model is written using the method-
ology we describe in this paper, the generated hardware is
comparable or even better than other implementations when
targeting an ASIC 28 nm technology node. Moreover, a fast,
cycle-accurate and bit-accurate simulator of the processor can
be compiled from the same C/C++ model. The resulting
maximum performance of the simulator reaches 24 million
cycles per second (Mcps) on integer workloads and around 15
Mcps on average, when executing floating-point and integer
workloads.

The object oriented nature of C++ also greatly improves the
readability and flexibility of the design description compared
to classical HDL-based implementations. Therefore, the pro-
cessor model can easily be modified, expanded and verified
using standard software development methodologies.

Recent developments include compatibility with modern
embedded operating systems such as Zephyr or RIOT. A
shared memory multicore version supporting Linux is in its
final step and an Out-of-Order version of Comet is on our
roadmap. Comet is used in several projects around fault toler-
ance, intermittently-powered systems and hardware security.

REFERENCES

[1] S. Rokicki, D. Pala, J. Paturel, and O. Sentieys, “What You Simulate Is
What You Synthesize: Designing a Processor Core from C++ Specifica-
tions,” in ICCAD 2019 - 38th IEEE/ACM International Conference on
Computer-Aided Design, pp. 1–8, Nov. 2019.


