
Pipelined architecture and simulator 

Comet: a RISC-V Core Synthesized from C++ Specifications 

Simon Rokicki, Joseph Paturel, Olivier Sentieys 

 

Univ Rennes, Inria, IRISA - Rennes, France 

{simon.rokicki, joseph.paturel, olivier.sentieys}@irisa.fr 

Introduction 

from a unique high-level synthesis and 
simulation C++ model to design a processor 
core implementing the RISC-V ISA 

Conclusion 

Simon Rokicki, Davide Pala, Joseph Paturel, Olivier Sentieys. What You Simulate Is What 
You Synthesize: Designing a Processor Core from C++ Specifications. ICCAD 2019 - 38th 
IEEE/ACM International Conference on Computer-Aided Design, Nov 2019, Westminster, 

The Comet project highlights the benefits of using HLS to develop CPU 
cores since it significantly reduces development and debugging time. 
Experimental studies show that the generated core has an area 
comparable with cores developed using standard development flows.  

References 

Development flow 

Designing the hardware of a processor core as 
well as its verification flow from a single high-
level specification would provide great 

advantages in terms of productivity and 
maintainability. 

In this work, we highlight the gain of starting 

Development Roadmap 

Current Project Status  

Get started at: https://gitlab.inria.fr/srokicki/Comet 

Short-term Medium-term Long-term 

Current project features: 

• Specification of 5-stage pipelined RISC-V 

core for rv32i or rv32im 

• Configurable cache architecture 

• Support for Zephyr OS 

• Simple SoC for Artyx-7 FPGAs 

• Simple to use and to modify 

• Already used in several research projects 

Synthesizable core 

Simulation Environment 

• Instrumentation 

• Syscall emulation 

• Elf reader 

• Not-yet Synthesized extensions 

• L2 cache 

• Shared cache policy 

• Multi-core system 

HLS 

What you simulate is what you synthesize 

2023 2024 

struct FtoDC ftodc; 

struct DCtoEx dctoex; 

struct ExtoMem extomem; 

struct MemtoWB memtowb; 

while true do 

 ftodc_tmp = fetch(); 

 dctoex_tmp = decode(ftodc); 

 extomem_tmp = execute(dctoex); 

 memtowb_tmp = memory(extomem); 

 writeback(memtowb); 

 bool forward = forwardLogic(); 

 bool stall = stallLogic(); 

 if (!stall) then 

  ftodc = ftodc_tmp; 

  dctoex = dctoex_tmp; 

  extomem = extomem_tmp; 

  memtowb = memtowb_tmp; 

 end 

 if forward then 

  dctoex.value1 = extomem.result; 

 end 

end 


