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Motivation — Fault injection (FI) [1] is a common threat
for embedded systems. Security analysis under FI attacks
can be performed either using tests on real platforms [2],
[3] or using simulation [4], [5] and formal methods [6],
[7] considering an ISA-level fault model such as instruction
skipping or register corruption. However, it has been shown
that many fault effects are not directly addressable at the
ISA level [8] and that a precise knowledge of the microar-
chitecture is essential for a better evaluation. We propose a
solution to model both software (SW) and hardware (HW)
parts of a system and then to formally evaluate its robustness
to FI attacks. This approach is complementary to the analysis
methods used at the software level. It identifies non-visible
faults at the ISA level that affect the security of the software
and that leverage the specificities of a microarchitecture.
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Figure 1: illustration of the proposed workflow.

Workflow to Study the Effects of FI — Fig. 1 illustrates
the workflow we propose to analyse the effects of FIs. It
requires as input: 1) the hardware description of the evaluated
microarchitecture, i.e., both its combinatorial and sequential
logics (Verilog 2005 and SystemVerilog 2017 are supported),
2) the executable program, i.e., the instructions to be executed
and their associated data, 3) the fault model which describes
the localization (both in time and space) and the effects of
the attack (e.g., bit flip, bit set) on the hardware, and 4) the
security property.

The formal model is a transition system produced by the
RTL synthesis tool Yosys and described with the SMT-LIB
language. It is constrained by assumptions which describe
the execution of the program and the effect of the FIs while
the assertions express security properties. Vulnerabilities are
found with the Yices SMT Solver using bounded model
checking techniques. Returned counter-examples highlight
the propagation of the faults in the microarchitecture.

The developed workflow can formally check the execu-
tion of a hundred instructions in the presence of faults and is
not suited for larger programs. It is also possible to extract
a sequence of instructions from a program and check its
robustness with degrees of freedom in the initial state of the
system.
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Figure 2: CV32E40P RTL block diagram.

Module Wire Timing Effect
id controller operand a fw mux sel o @57 bit-flip
prefetch buffer status cnt n @21-26 bit-set
. . . . . . . . . . . .

TABLE 1: fault injections found by our analysis over Veri-
fyPin.

Results — We carry out a fault vulnerability analysis
on the microarchitecture of the RISC-V CV32E40P, a 32-bit
processor with a 4-stage, in-order pipeline (Fig. 2).

We study the VerifyPin [9] program which compares
two 4-digit codes stored in memory. We investigate single-
FI attacks anywhere on the design, at any time during the
execution of VerifyPin. About 500 CPU hours are needed to
find all faults leading to vulnerabilities on VerifyPin.

Table 1 illustrates some faults that bypass the se-
cure authentication mechanism (about 50 were identi-
fied). Our solution confirms some results already known
in the literature. For example, it is possible to per-
form a single bit flip on the forwarding mechanism (i.e.,
operand_a_fw_mux_sel_o at cycle 57) which controls
the multiplexer before the execute (EX) stage in Fig. 2.
It permits to inject a bad value into the pipeline [8]. In
addition, we also identify faults exploiting specific parts of
microarchitectures that are not yet known in the literature
and cannot be easily represented at the ISA level. The use
of the formal model makes it possible to find new and very
interesting effects. It contributes to a better understanding
of how faults propagate and lead to the vulnerabilities. For
instance, a single bit-set FI on the prefetch buffer (PFB) (i.e.,
status_cnt_n) between clock cycles 21 and 26 leads to
several effects that are difficult to model:
1) Instructions speculatively fetched in the PFB are executed,

whereas they are discarded in the non-faulty behavior,
2) Next instructions are potentially pushed in the pipeline in

an incorrect order.
3) At the next branch instruction, the program jumps to an

incorrect address.
Further faults identified by the formal analysis on VerifyPin
are under investigation.
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