Springbok
Using Renode and IREE to prototype
and develop ML models on RVV

Michael Gielda (Antmicro), Adam Jesionowski (Google)

Google Research

o1 | ow Power ML on RISC-V

02 |ntroduction to Renode

03 System Co-design
with Renode

Google Research

01
Low Power Machine \
Learning on RISC-V -

Google Research

Springbok

Springbok is an RISC-V core with the Vector
extension (RVV) that runs machine learning (ML)
workloads

Part of the AmbiML project to create an open-source
ML development ecosystem centered on privacy and

security

https://qgithub.com/AmbiML/iree-rv32-springbok

Google Research

https://github.com/AmbiML/iree-rv32-springbok

RVV for ML
Acceleration

Machine learning relies heavily on matrix multiply and
add operations suitable for running with a vector unit

Springbok runs the ML models as well as other
vectorizable components (e.g. image manipulation)

Batched Results
A
Batched Input vo l % |
% [2 a0 vy 1 vy
v Ve
2 2
=
Vy Vs
3|3 3 Vi v,
Vs v Ve

Google Research

Python to RVV

The majority of machine learning modelling is
performed in Python using frameworks like PyTorch,
Tensorflow, or JAX

But Springbok is a bare-metal environment, we can’t
run a Python interpreter!

Solution: IREE

PyTorch

JAX

TF

TFLite

Google Research

IREE

Intermediate
ML toolchain capable of transforming Python models .
through a series of intermediate representations (IR) Represe ntatlon
down into LLVM E .
xecution
These transformations enable optimizations and the E nVi ron ment

ability to target and scale across heterogeneous
architectures, from servers with GPUs to embedded
environments

https://github.com/google/iree

Google Research

https://github.com/google/iree

First step: MLIR

Multi-Level Intermediate Representation

Element-wise multiply of two 1024-element i32 vectors:

func @simple_mul(%arg0d: tensor<1024xi32>, %argl: tensor<1024xi32>) -> tensor<1024xi32>
{

%0 = "mhlo.multiply" (%arg@, %argl) : (tensor<1024xi32>, tensor<1024xi32>) ->
tensor<1024xi32>

return %0 : tensor<1024xi32>

Google Research

Invoke IREE with RVV flags

IREE compiler LLVM flags:
-iree-1lvm-target-triple=riscv32-pc-linux-elf
-iree-1llvm-target-cpu=generic-rv32
-iree-llvm-target-cpu-features=+m,+f,+zv1512b,+zve32x
-iree-1lvm-target-abi=ilp32
-riscv-v-vector-bits-min=512
-riscv-v-fixed-length-vector-1lmul-max=8

Runtime LLVM RISC-V flags:
-march=rv32imf_zv1512b_zve32x

Google Research

Output: RVV

Google Research

vsetivli
vle32.v
add
vle32.v
vmul.vv
add
vse32.v

v8, (a4)
ad,a3,al
v9, (a4d)
v8,Vv9,Vv8
a4,a0,al
v8, (a4)

zero,16,e32,ml,ta,mu

Springbok HAL

IREE Runtime ~25.150KB
i i crling R N S TSR :
777, | 7,
Y AR HAL !
IREE’s output consists of a virtual machine and the : e : I s ' :
compiled ML output , v 777 |
preci-outpe . A8~ 1!/ CPU || Vukan |i
1 | v/ . /
It needs a Hardware Abstraction Layer (HAL) to : K& /. ; : :
operate on RISC-V and a scheduler I ¢ : : CUDA WebGPU :
Vi v mn g | \
I
Our code provides an example of bare-metal l ROCM . :
execution on RISC-V y Wi

Google Research

02

Introduction to
Renode

Google Research

What is Renode

Renode is an open source simulation framework by
Antmicro focusing on developer productivity and
flexibility.

It simulates whole SoCs and boards, allowing you to
run the same software as on hardware.

https://www.renode.io

R=NOD=

Google Research

https://www.renode.io

What can you do with
Renode

loT development, @
operating systems porting %

Architectural exploration, Network protocols

pre-silicon development implementation and validation
% Continuous Integration, . .

< OE‘ ML development Ba testing 9 % Security analysis

Google Research

Building block
nature

e

Google Research

Textual platform
description

Renode assembles platforms from building blocks
using text-based, layered .repl files:

e Great for prototyping: just edit a text file and
reload (no need to rebuild)

e Enables easy support for lines of similar
products

e Can be easily auto-generated - ideal for
soft SoC support and ongoing development
projects like Springbok

nvic: IRQControllers.NVIC @ sysbus
OXEOOOE000
-> cpu@Eo

cpu: CPU.CortexM @ sysbus
cpuType: "cortex-m4"
nvic: nvic

spi2: SPI.NRF52840_SPI @ sysbus
0x40023000
-> nvic@Ox23

gpio0: GPIOPort.NRF52840_GPIO @ sysbus
Ox50000000

uart@: UART.NRF52840_UART @ sysbus
0x40002000

easyDMA: true

-> nvic@2

Google Research

Model stubs

To enable needs-based, iterative platform
development Renode supports model stubs in
Python.

Model parts that you really need
Log or mock everything else
Implement Python peripherals
as one liners or in separate files

rcc: Python.PythonPeripheral @ sysbus
Ox40023800

size: Ox400

initable: true

script: “OxFFFFFFFF if
request.offset != Ox8 else
OxFFFFFFFA”

pwrCrl: Python.PythonPeripheral @
sysbhus 0x40007000

size: Ox4

initable: true

filename:
"scripts/pydev/flipflop.py"

Google Research

Internal scripting
language

Renode allows you to interact with every detail
of the emulation via its CLI - the Monitor

Monitor commands can be run as scripts
Access to all peripherals and settings
Control the emulation and tracing options
Add your own commands on the fly

using sysbus
mach create $name

machine LoadPlatformDescription
@platform.repl

emulation CreateSwitch "switch"

connector Connect ethmac switch

emulation CreateNetworkServer "server"
"192.168.100.100"

connector Connect server switch

server StartTFTP 6069
server.tftp ServeFile $micropython
"boot.bin"

showAnalyzer uart

macro reset
mmn

sysbus LoadBinary $bios 0x0
cpu PC 0x0

runMacro $reset
Google Research

Python support

Renode has a built-in Python runtime (IronPython)

e Complex event hooks with flow control
e Access to all emulation details
e Hookon:

o

o O O O O O

Blocks of code

PC value, watchpoints
Interrupts
Memory/peripheral access
Network packets

Serial data

Whatever you want

(machine) 1include @notification_helper.py
(machine) set py_notification_hook

> mmn

> # recipient and get_recipients defined
in external file

> for recipient not get_recipients():

>

recipient.send_notification(self.line)

> mmn

(machine) uart AddLineHook "dinteresting
value" $py_notification_hook

(machine) cpu AddHookAtInterruptBegin
"self.DebuglLog('exception %d' %
exceptionIndex)"

Google Research

Debugging with
GDB

Renode allows you to debug applications
running on emulated machines using GDB

Uses the GDB remote protocol

e Breakpoints, watchpoints, stepping,
memory access etc

e Virtual time does not progress when
the emulated CPU is halted
Multi-core debugging
Disassembly via LLVM for runtime code
analysis

Google Research

https://antmicro.com/blog/2019/08/multi-core-debugging-with-gdb-in-renode/

Logging & tracing

Extensive and customisable logging and tracing
capabilities

Easily log executed functions or peripheral
accesses
Precise filtering depending on the log source

and target: console or log file

Built-in graphical log analyser

Various data sources - executed software,
peripherals accesses / watchpoints, interrupts,
network/UART data, framework events,
user-defined events

Total results: 20

Id Type Timestamp
945 @ INFO 15:44:54.9808
946 @ INFO 15:44:54.9935

949 @ DEBUG 15:44:55.3968
951 @ DEBUG 15:44:55.3979

15:44:55.3979
955 @ DEBUG 15:44:55.3979
1103 A\ WARNING 15:44:55.5161
1104 A\ WARNING 15:44:55.5161

1105 A\ WARNING 15:44:55.5161

17> @ ncoiie AC./.cE 7215

Source

sysbus
debugArea

smallRom

ddr
gpiolnputs
gpiolnputs

gpiolnputs

cuchiie

Machine Text

Mi-V

Mi-V

Mi-v

Mi-v

(VIRV}

Including script :/home/antmicro/hqg-master/renoc
System bus created.
Segment size automatically calculated to value 64Ki

Segment size automatically calculated to value 64Ki

Segment size automatically calculated to value 64K

Segment size automatically calculated to value 4Mil
Writing to an output GPIO pin #0
Writing to an output GPIO pin #1

Writing to an output GPIO pin #2

| nndina EIE [+mnlranada 07740 [1a%1FAnf 1an1 1AL

Voo D S 0ED G

Search

000K

Google Research

https://renode.readthedocs.io/en/latest/basic/logger.html#creating-a-trace-of-the-execution
https://renode.readthedocs.io/en/latest/basic/logger.html#logging-access-to-peripherals
https://renode.readthedocs.io/en/latest/basic/logger.html#logging-access-to-peripherals

IDE support

Renode’s flexible GDB support enables use IDEs like
Visual Studio Code.

e We provide configuration files to easily run
Renode in debug mode with VS code

e Debug interactively with full and precise
knowledge of both HW and SW, e.g. how
specific parts of drivers affect Renode models

Google Research

[]
(4 wait-for-thread rootserver
q eceived signal SIGTRAP, Trace/breakpoint trap.
in 22 ()
R from ci es/b d/ca oa
seld tl

d signal SIGTRAP, Trace/breakpoint trap.
age/car j capdl-Loade

s/caj app/src/na

Developed with Google for this project, allows
system-level awareness in debugging workflow.

platsupport_serial_setup_boot info_failsafe();
}

" A_RESET "

Includes:

signal SIGTRAP, Trace/breakpoint trap.
’ pro apd

e system threads awareness (automatically e
handle context switches) -
e context aware breakpoints
debug symbols auto-reload on context switch
awareness of virtual memory mapping O T s

. Backtrace stoppe previous frame identical to this frame (corrupt stack?)
changes on context switch

pp/src/main.c:2128

(gdb) sel4 thread

Relatively simple to port to other OSs (Zephyr port on
the way now). Google Research

Renode RISC-V
support

Renode supports RV32 and RVé4 with standard
extensions, with multicore AMP and SMP processing.

Added support for Vector v1.0 extensions while
working on Springbok support.

Support for custom instructions and CSRs,
implemented natively in Renode, in Python or even in
Verilog via Verilator!

Python

cpu InstallCustomInstructionHandlerFromString
"00010100011100000000000010010011"
"cpu.DebuglLog('I’m running Python
here!")"

C#
RegisterCSR((ulong)ex3el,

() => counterValue,

value => UpdateCounter(value));
InstallCustomInstruction(

pattern: "0000011----- sssss---dddddeeele11”,
handler: HandleMaskIrqgInstruction);

Google Research

Development flow - CI

Company Local PC
Environment
— |0
Push to server Commit code

!

Cl e.g. with Tests with various
Robot + Renode configurations

Google Research

B — =

Interactive test Get help from
and debug in colleagues
Renode in an identical setup
| m——
Develop with
favorite
IDE/compiler
Tests pass? @ — } o—_

Merge changes

-

Field tests
/ deployment

Example CI -
Zephyr Dashboard

Renode Zephyr Dashboard — massive automated ClI
system testing Zephyr targets running standard
demos in Renode,

e Uses publicly available data to generate
thousands of test cases

e Based on our open dts2repl tool for converting
device trees into Renode’s .repl files

e We are now at almost 140 passing boards!

Searct 85 PASSED 120 PASSED 124 PASSED. 136 PASSED 138 PASSED
meroprmion TOROMTE o sewwoowe mewowomo
MM MM-FEATHER BUILT BUILT BULT BUILT BUILT
MM MM-SWIFTIO BUILT BULT BULT BULT BUILT
ARM V2M MPS2 BUILT BULT BULT BULT BUILT
ARM V2M MPS2-AN521 BUILT BULT BULT BULT BUILT
ARM V2M MPS2-AN521_ns suILT BuLT sunT sunT Bur
ARM V2M MPS2-AN521_remote suLT BuILT BuILT BuUILT BuLT
Arm MPS3-AN547 BuULT BuLT BURT BuULT BuLT
Arm MPS3-AN547_ns BUILT BuILT BuLT BUILT BUILT
MSP-EXP432P401R-LAUNCHXL BUILT BUILT BULT BUILT BUILT
Nuvoton NPCX7M6FB EVB NOT BURT NOT BUILT BUILT BULT BULT
Nuvoton NPCX9M6F EVB NOT BULT NOT BUILT BUILT BULT BULT
NRF21540-DK-NRF52840 PASSED PASSED PASSED PASSED PASSED
BLE400 NOT BULT PASSED PASSED PASSED PASSED
BLE Nano NOT BUILT PASSED PASSED PASSED PASSED
NRF51-VBLUNnoS1 NOT BULT PASSED PASSED PASSED PASSED
NRF51-DK-NRF51422 NOT BURT PASSED PASSED PASSED PASSED
NRFS51-Dongle-nRF51422 NOT BULT PASSED PASSED PASSED PASSED
NRF52832-MDK PASSED PASSED PASSED PASSED PASSED
NRF52833-DK-NRF52820 NOT BULT PASSED PASSED PASSED PASSED
NRF52833-DK-NRF52833 PASSED PASSED PASSED PASSED PASSED
Electronut Labs Blip PASSED PASSED PASSED PASSED PASSED
NRF52840-MDK PASSED PASSED PASSED PASSED PASSED
Electronut Labs Papyr PASSED PASSED PASSED PASSED. PASSED
NRF52840-DK-NRF52811 NOT BULT PASSED PASSED PASSED PASSED
NRF52840-DK-NRF52840 PASSED PASSED PASSED PASSED PASSED
NRF52840-Dongle-NRF52840 NOT BULT BuLT BuLT PASSED BULT
NRFS2 Adafruit Feather PASSED PASSED PASSED PASSED PASSED
BLE Nano 2 PASSED PASSED PASSED PASSED PASSED
Sparkfun nRF52832 breakout PASSED PASSED PASSED PASSED PASSED
NRF52-VBLUN052 PASSED PASSED PASSED PASSED PASSED
NRF52-DK-NRF52805 NOT BURLT PASSED PASSED PASSED PASSED
NRF52-DK-NRF52810 NOT BULT PASSED PASSED PASSED PASSED
NRF52-DK-NRF52832 PASSED PASSED PASSED PASSED PASSED
NRF5340-DK-NRF5340-application-MCU BUILT BuULT BsunT BulLT BuILT
NRF5340-DK-NRF5340-application-MCU-Non-Secure NOT BULT BuLT BUILT BulT BuILT

https://zephyr-dashboard.renode.io/
https://opensource.antmicro.com/projects/dts2repl

Example CI - Springbok

& AmbiML /iree-rv32-springbok ' Pubiic

<> Code (©) Issues {9 Pullrequests (® Actions [Projects [0 wiki @ Security |~ Insights

¥ main ~ ¥ 1branch © 0tags Go to file Add file

ca PiotrZierhoffer Add GitHub actions (#3) - v 7639879 3daysago ‘) 8 commits

B8 githubiworkfiov All checks have passed 3 days ago
1 successful check

B8 build_tools 3 days ago
v Springbok README tests | test (push) Successfu... Details

B cmake R 6 days ago

B samples Initial Springbok commit. 6 days ago

Google Research

03

System Co-design
with Renode

Google Research

Hardware/Software
Co-design for ML

ML operates on a wide variety of inputs and at a wide
range of scales

Co-design enables us to speed up the iteration loops
on both hardware and software

Simulation is crucial here as it enables us to modify
hardware at the speed of software

|dentify
Feature

SVNW

Update
Simulation

Develop SW

RTL

Synthesis,
Verification

\/

Final
Feature

Google Research

Motivating Example

Springbok acts like a DSP in the larger system. We
start it off by writing to an enable register, it runs the
model, it halts. When it halts, we want to interrupt
another core.

Control Block Write

Management
Core

Vector Core

GPIO Interrupt

Google Research

Custom HALT
(SW)

We utilize RISC-V’s CUSTOM-3 (1111011) opcode for
several purposes.

_finish:
Our HALT is CUSTOM-3 where func3 is 3. .-
.word Ox0000307B # custom3<func3=3>

In our C runtime, the last instruction executed is the
HALT.

Google Research

CUStOm HALT SpringbokRV32.cs
(RenOde) InstallCustomInstruction(

PEREEEIMMNE ' oreoscosccosnonsooscos oo 1111e11",

Renode provides an API for installing handlers when handler: HandleSpringbokCustom3);
we hit a custom instruction.

// HandleSpringbokCustom3, func3=3
Core.IsHalted = true;

mode = Mode.Freeze | Mode.SwReset;
irgsPending |= InterruptBits.Finish;
IrgUpdate();

In code we halt the core and trigger an interrupt.

Google Research

Springbok MobileNetv1 Demo on Renode

Google Research

Google Research

https://docs.google.com/file/d/1rCKzN7wAUzH_3ADu9EXwpaSWuIG5e401/preview

Thank You

Michael Gielda and Adam JesionowsKki

https://github.com/AmbiML/iree-rv32-springbok
https://www.renode.io

Google Research

https://github.com/AmbiML/iree-rv32-springbok
https://www.renode.io

