
Michael Gielda (Antmicro), Adam Jesionowski (Google)

Springbok
Using Renode and IREE to prototype
and develop ML models on RVV

01

Agenda
02

03

Low Power ML on RISC-V

Introduction to Renode

System Co-design
with Renode

Low Power Machine
Learning on RISC-V

01

Springbok

Springbok is an RISC-V core with the Vector
extension (RVV) that runs machine learning (ML)
workloads

Part of the AmbiML project to create an open-source
ML development ecosystem centered on privacy and
security

https://github.com/AmbiML/iree-rv32-springbok

https://github.com/AmbiML/iree-rv32-springbok

RVV for ML
Acceleration
Machine learning relies heavily on matrix multiply and
add operations suitable for running with a vector unit

Springbok runs the ML models as well as other
vectorizable components (e.g. image manipulation)

Python to RVV

The majority of machine learning modelling is
performed in Python using frameworks like PyTorch,
Tensorflow, or JAX

But Springbok is a bare-metal environment, we can’t
run a Python interpreter!

Solution: IREE

IREE

ML toolchain capable of transforming Python models
through a series of intermediate representations (IR)
down into LLVM

These transformations enable optimizations and the
ability to target and scale across heterogeneous
architectures, from servers with GPUs to embedded
environments

https://github.com/google/iree

Intermediate
Representation
Execution
Environment

https://github.com/google/iree

func @simple_mul(%arg0: tensor<1024xi32>, %arg1: tensor<1024xi32>) -> tensor<1024xi32>
{
 %0 = "mhlo.multiply"(%arg0, %arg1) : (tensor<1024xi32>, tensor<1024xi32>) ->
tensor<1024xi32>
 return %0 : tensor<1024xi32>
}

First step: MLIR

Multi-Level Intermediate Representation

Element-wise multiply of two 1024-element i32 vectors:

IREE compiler LLVM flags:
-iree-llvm-target-triple=riscv32-pc-linux-elf
-iree-llvm-target-cpu=generic-rv32
-iree-llvm-target-cpu-features=+m,+f,+zvl512b,+zve32x
-iree-llvm-target-abi=ilp32
-riscv-v-vector-bits-min=512
-riscv-v-fixed-length-vector-lmul-max=8

Runtime LLVM RISC-V flags:
-march=rv32imf_zvl512b_zve32x

Invoke IREE with RVV flags

Output: RVV

vsetivli zero,16,e32,m1,ta,mu
vle32.v v8,(a4)
add a4,a3,a1
vle32.v v9,(a4)
vmul.vv v8,v9,v8
add a4,a0,a1
vse32.v v8,(a4)
…

Springbok HAL

IREE’s output consists of a virtual machine and the
compiled ML output

It needs a Hardware Abstraction Layer (HAL) to
operate on RISC-V and a scheduler

Our code provides an example of bare-metal
execution on RISC-V

Introduction to
Renode

02

What is Renode

Renode is an open source simulation framework by
Antmicro focusing on developer productivity and
flexibility.

It simulates whole SoCs and boards, allowing you to
run the same software as on hardware.

https://www.renode.io

https://www.renode.io

What can you do with
Renode

IoT development,
operating systems porting

Architectural exploration,
pre-silicon development

Network protocols
implementation and validation

ML development
Continuous Integration,
testing Security analysis

Building block
nature

Textual platform
description
Renode assembles platforms from building blocks
using text-based, layered .repl files:

● Great for prototyping: just edit a text file and
reload (no need to rebuild)

● Enables easy support for lines of similar
products

● Can be easily auto-generated - ideal for
soft SoC support and ongoing development
projects like Springbok

nvic: IRQControllers.NVIC @ sysbus
0xE000E000
 -> cpu@0

cpu: CPU.CortexM @ sysbus
 cpuType: "cortex-m4"
 nvic: nvic

spi2: SPI.NRF52840_SPI @ sysbus
0x40023000
 -> nvic@0x23

gpio0: GPIOPort.NRF52840_GPIO @ sysbus
0x50000000

uart0: UART.NRF52840_UART @ sysbus
0x40002000
 easyDMA: true
 -> nvic@2

Model stubs

To enable needs-based, iterative platform
development Renode supports model stubs in
Python.

● Model parts that you really need
● Log or mock everything else
● Implement Python peripherals

as one liners or in separate files

rcc: Python.PythonPeripheral @ sysbus
0x40023800
 size: 0x400
 initable: true
 script: “0xFFFFFFFF if
request.offset != 0x8 else
0xFFFFFFFA”

pwrCr1: Python.PythonPeripheral @
sysbus 0x40007000
 size: 0x4
 initable: true
 filename:
"scripts/pydev/flipflop.py"

Internal scripting
language
Renode allows you to interact with every detail
of the emulation via its CLI - the Monitor

● Monitor commands can be run as scripts
● Access to all peripherals and settings
● Control the emulation and tracing options
● Add your own commands on the fly

using sysbus
mach create $name

machine LoadPlatformDescription
 @platform.repl

emulation CreateSwitch "switch"
connector Connect ethmac switch
emulation CreateNetworkServer "server"
 "192.168.100.100"
connector Connect server switch

server StartTFTP 6069
server.tftp ServeFile $micropython
 "boot.bin"

showAnalyzer uart

macro reset
"""
 sysbus LoadBinary $bios 0x0
 cpu PC 0x0
"""
runMacro $reset

Python support

Renode has a built-in Python runtime (IronPython)

● Complex event hooks with flow control
● Access to all emulation details
● Hook on:

○ Blocks of code
○ PC value, watchpoints
○ Interrupts
○ Memory/peripheral access
○ Network packets
○ Serial data
○ Whatever you want

(machine) include @notification_helper.py
(machine) set py_notification_hook
> """
> # recipient and get_recipients defined
in external file
> for recipient not get_recipients():
>
recipient.send_notification(self.line)
> """
(machine) uart AddLineHook "interesting
value" $py_notification_hook

(machine) cpu AddHookAtInterruptBegin
 "self.DebugLog('exception %d' %
exceptionIndex)"

Debugging with
GDB
Renode allows you to debug applications
running on emulated machines using GDB

● Uses the GDB remote protocol
● Breakpoints, watchpoints, stepping,

memory access etc
● Virtual time does not progress when

the emulated CPU is halted
● Multi-core debugging
● Disassembly via LLVM for runtime code

analysis

https://antmicro.com/blog/2019/08/multi-core-debugging-with-gdb-in-renode/

Logging & tracing

Extensive and customisable logging and tracing
capabilities

● Easily log executed functions or peripheral
accesses

● Precise filtering depending on the log source
and target: console or log file

● Built-in graphical log analyser
● Various data sources - executed software,

peripherals accesses / watchpoints, interrupts,
network/UART data, framework events,
user-defined events

https://renode.readthedocs.io/en/latest/basic/logger.html#creating-a-trace-of-the-execution
https://renode.readthedocs.io/en/latest/basic/logger.html#logging-access-to-peripherals
https://renode.readthedocs.io/en/latest/basic/logger.html#logging-access-to-peripherals

IDE support

Renode’s flexible GDB support enables use IDEs like
Visual Studio Code.

● We provide configuration files to easily run
Renode in debug mode with VS code

● Debug interactively with full and precise
knowledge of both HW and SW, e.g. how
specific parts of drivers affect Renode models

OS-aware
debugging
Developed with Google for this project, allows
system-level awareness in debugging workflow.

Includes:

● system threads awareness (automatically
handle context switches)

● context aware breakpoints
● debug symbols auto-reload on context switch
● awareness of virtual memory mapping

changes on context switch

Relatively simple to port to other OSs (Zephyr port on
the way now).

Renode RISC-V
support

Python

cpu InstallCustomInstructionHandlerFromString
 "00010100011100000000000010010011"
 "cpu.DebugLog('I’m running Python
 here!')"

C#

RegisterCSR((ulong)0x3e1,
 () => counterValue,
 value => UpdateCounter(value));

InstallCustomInstruction(
 pattern: "0000011-----sssss---ddddd0001011",
 handler: HandleMaskIrqInstruction);

Renode supports RV32 and RV64 with standard
extensions, with multicore AMP and SMP processing.

Added support for Vector v1.0 extensions while
working on Springbok support.

Support for custom instructions and CSRs,
implemented natively in Renode, in Python or even in
Verilog via Verilator!

Development flow - CI

Example CI -
Zephyr Dashboard
Renode Zephyr Dashboard — massive automated CI
system testing Zephyr targets running standard
demos in Renode,

● Uses publicly available data to generate
thousands of test cases

● Based on our open dts2repl tool for converting
device trees into Renode’s .repl files

● We are now at almost 140 passing boards!

using sysbus
mach create $name

machine LoadPlatformDescription
 @platform.repl

emulation CreateSwitch "switch"
connector Connect ethmac switch
emulation CreateNetworkServer "server"
 "192.168.100.100"
connector Connect server switch

server StartTFTP 6069
server.tftp ServeFile $micropython
 "boot.bin"

showAnalyzer uart

macro reset
"""
 sysbus LoadBinary $bios 0x0
 cpu PC 0x0
"""
runMacro $reset

https://zephyr-dashboard.renode.io/
https://opensource.antmicro.com/projects/dts2repl

Example CI - Springbok

System Co-design
with Renode

03

Hardware/Software
Co-design for ML
ML operates on a wide variety of inputs and at a wide
range of scales

Co-design enables us to speed up the iteration loops
on both hardware and software

Simulation is crucial here as it enables us to modify
hardware at the speed of software

RTLUpdate
Simulation

Develop SW Synthesis,
Verification

Final
Feature

Identify
Feature

SW HW

Motivating Example

Springbok acts like a DSP in the larger system. We
start it off by writing to an enable register, it runs the
model, it halts. When it halts, we want to interrupt
another core.

Management
Core

Vector Core

GPIO Interrupt

Control Block Write

Custom HALT
(SW)

_finish:
 …
 .word 0x0000307B # custom3<func3=3>

We utilize RISC-V’s CUSTOM-3 (1111011) opcode for
several purposes.

Our HALT is CUSTOM-3 where func3 is 3.

In our C runtime, the last instruction executed is the
HALT.

Custom HALT
(Renode)

SpringbokRV32.cs

InstallCustomInstruction(
 pattern: "-------------------------1111011",
 handler: HandleSpringbokCustom3);

// HandleSpringbokCustom3, func3=3
Core.IsHalted = true;
mode = Mode.Freeze | Mode.SwReset;
irqsPending |= InterruptBits.Finish;
IrqUpdate();

Renode provides an API for installing handlers when
we hit a custom instruction.

In code we halt the core and trigger an interrupt.

Springbok MobileNetv1 Demo on Renode

https://docs.google.com/file/d/1rCKzN7wAUzH_3ADu9EXwpaSWuIG5e401/preview

Thank You
Michael Gielda and Adam Jesionowski

https://github.com/AmbiML/iree-rv32-springbok
https://www.renode.io

https://github.com/AmbiML/iree-rv32-springbok
https://www.renode.io

