
FORMAL PROCESSOR MODELING FOR ANALYZING SAFETY AND

SECURITY PROPERTIES ON RISC-V CASE STUDIES

Engineer-researchers: Mathieu Jan, Mihail Asavoae, Belgacem Ben Hedia,

Oumaima Matoussi, Farhat Thabet, Hai-Dang Vu

PhD students: Benjamin Binder, Samira Ait Bensaid, Simon Tollec

External collaborators: Damien Couroussé (CEA), Karine Heydemann (LIP6)

| 2

Context
Embedded systems: connected/physically accessible, increased hardware/software complexity

From safety-critical to IoT devices

Goal: increase the trust in embedded systems using applied formal methods

Software (SW) and hardware (HW) formal verifications are (most often) separated activities

Understand system behavior to better design them

Approach: combine software and hardware formal verifications

MOTIVATIONS AND APPROACH

System

+Hardware Software

| 3

For what kind of (extra-functional) properties and why?
Safety property: code-specific detection of timing anomalies within pipelines of processors

⚫ Optimize Worst-Case Execution Time (WCET) analyzers

Security property: identification of fault-injection points in a µ-architecture that lead to SW exploits

⚫ Better understand effect of faults in a µ-architecture and capture that in SW fault model

Challenges
How to model systems for an efficient verification of extra-functional properties?

How to extract extra-functionnal (timing) properties from a system?

LEAF: FORMAL ANALYSIS OF HW/SW CPS

System

HDL

design

Program
Formal ISA

model

Formal HW

model

Property

Verified property

OR

Identification of

counter-example

Automation

Execution

| 4

• Real-time systems are subject to strong timing constraints

• Timing anomalies are undesired phenomena
⚫ Amplificiation timing anomalies

⚫ Prevent from bounding the individual timing contributions of components
⚫ Not possible to perform compositional static analyses (pipelines, caches…)

⚫ Counter-intuitive timing anomalies
⚫ Prevent from always following local worst cases to determine the global worst case
⚫ Jeopardize static analyses (common assumptions)

• But how to build the hardware formal models required by WCET analyzers?
• Few WCET analyzers starts from VHDL/Verilog designs

• High-level HDL languages (Chisel, SpinalHDL, Clash, etc.)

WCET AND TIMING ANOMALIES
[WCET2018, ERTS2020, FMICS2020, ASP-DAC2020, RTCSA2021, ERTS2022]

HDL

design
Formal HW

model

Automation

| 5

Chisel

Verilog

Hardware compiler framework

PIPELINE DATAPATH ANALYSIS
[RTAS2022-BP]

FIRRTL

High

form

Low

form

Registers

context

Registers

dependencies

Pipeline

Construction

Heuristic

« When »

Pipeline analysis

When

MuxCase

When

Mux

Mux

Mux

Mux

Mux

| 6

d

EXAMPLE OVER 5-STAGE RISC-V
SODOR PROCESSOR

Reg Rule Stage

if_pc - 1

dec_pc 1 2

ex_pc 1 3

mem_pc 1 4

dec_inst 2 2

ex_alu_op1 2 3

ex_alu_op2 2 3

ex_rs2_data 2 3

mem_alu_out 1 4

mem_rs2_data 1 4

wb_wbdata 1 5

| 7

d

EXAMPLE OVER 5-STAGE RISC-V
SODOR PROCESSOR

Reg Rule Stage

if_pc - 1

dec_pc 1 2

ex_pc 1 3

mem_pc 1 4

dec_inst 2 2

ex_alu_op1 2 3

ex_alu_op2 2 3

ex_rs2_data 2 3

mem_alu_out 1 4

mem_rs2_data 1 4

wb_wbdata 1 5

| 8

d

EXAMPLE OVER 5-STAGE RISC-V
SODOR PROCESSOR

Reg Rule Stage

if_pc - 1

dec_pc 1 2

ex_pc 1 3

mem_pc 1 4

dec_inst 2 2

ex_alu_op1 2 3

ex_alu_op2 2 3

ex_rs2_data 2 3

mem_alu_out 1 4

mem_rs2_data 1 4

wb_wbdata 1 5

| 9

d

EXAMPLE OVER 5-STAGE RISC-V
SODOR PROCESSOR

Reg Rule Stage

if_pc - 1

dec_pc 1 2

ex_pc 1 3

mem_pc 1 4

dec_inst 2 2

ex_alu_op1 2 3

ex_alu_op2 2 3

ex_rs2_data 2 3

mem_alu_out 1 4

mem_rs2_data 1 4

wb_wbdata 1 5

| 10

▪ Extended analysis for multi-modular datapath pipelines (almost done in fact !)

▪ Experiments on out-of order processors: e.g. Boom processor

▪ Generate formal abstract models (WCET but not only …)

EVALUATIONS AND FUTURE WORK
(ON AUTOMATIC CONSTRUCTION OF HW MODELS)

| 11

• New fault-injection attack paths shown at the RTL-level
[Johan Laurent, Vincent Beroulle, Christophe Deleuze, Florian Pebay-Peyroula: Fault Injection on

Hidden Registers in a RISC-V Rocket Processor and Software Countermeasures. DATE 2019]

⚫ Identified by manual code review
⚫ Analysis of effects by relying on simulations

• Extend LEAF approach to identify and understand the
impact of fault injections on processor
microarchitectures
⚫ SMT-based formal hardware model (both sequential and

combinatorial logics): generated by Yosys
⚫ Software model: sequence of instructions and data
⚫ Fault model: spatial, temporal and effect dimensions
⚫ Security property: encode an expected behavior

A SIMILAR APPROACH FOR SECURITY ...

+Hardware Software

Property

| 12

• Use-case: verifyPIN
over RISC-V CV32E40P

• Identifies non visible faults at the ISA level based
on microarchicture specificities

⚫ Forwarding mechanism (not new)
⚫ Prefetch buffer (new)

⚫ Instructions speculatively fetched in the PFB are executed,
whereas they are discarded in the non-faulty behavior

⚫ Next instructions are potentially pushed in the pipeline in an
incorrect order

⚫ At the next branch instruction, the program jumps to an
incorrect address

PRELIMINARY RESULTS

...

| 13

• LEAF approach: combine software and hardware formal for the co-verification of
extra-functional properties
• Come to see our posters on the subjects!
• « Pipeline Datapath Models from RISC-V based cores » by Samira Ait Bensaid
• « Formal Analysis of Fault Injection Effects on RISC-V Microarchitecture Models » by Simon Tollec

• Future work
• Further investigate abstract modeling flavours to improve formal verifications
• Towards mitigation strategies: SW and/or HW

CONCLUSION AND FUTURE WORK

System

HDL

design

Program
Formal ISA

model

Formal HW

model

Property

Verified property

OR

Identification of

counter-example

SW mitigation

HW mitigation

Automation

Automation

