

PULP PLATFORM Open Source Hardware, the way it should be!

RISC-V based Power Management Unit for an **HPC** processor

Andrea Bartolini **Alessandro Ottaviano** <a.bartolini@unibo.it> <aottaviano@iis.ee.ethz.ch>

Power Management in HPC

ControlPULP Hardware and Software Architecture

ControlPULP Validation

HPC Power Management

03/05/2022

HPC Power Management

Power Management standard HW/SW interfaces: In-band:

• The **SCMI** (The System Control and Management Interface) for OS communication.

RJ45

RAS

Node Power Cap

Out of band

HPC Power Management

Power Management standard HW/SW interfaces: In-band:

• The **SCMI** (The System Control and Management Interface) for OS communication.

RJ45

BMC

Out-of-band:

RAS

Node Power Cap

Out of band

- PMBus, AVSBus for VRM communication
- MCTP/PLDM for BMC communication

On-Chip Power Controller

- Integrated Power Controller Subsystem (PCS)
 for HPC processors
- RISC-V based & open-* (PULP Platform-based), extended to support standard power management interfaces
- To be **integrated within Rhea**, EPI firstgeneration chip family.

Design goals:

- Flexible Power Control Firmware (PCF)
 - => Real-time support in hw/sw (low/predictable interrupt latency, FreeRTOS, ...)
- Fine-grain power management w. large core count and high efficiency
 => multicore design support w. Packed-SIMD FP support.
- Support of large number of on-chip interfaces
 - => Decouple on-chip transfers and computation with DMA-based data movement

RISC-V Cores				Peripherals		Interconnect	
RI5CY	RI5CY Micro		Ariane 64b	JTAG	SPI	Logarithmic int	erconnect
riscy 32b 32b	riscy 32b	UART		I2S	APB – Periph	eral Bus	
				DMA	GPIO	AXI4 – Interc	onnect
Platforms	s M R5 A Core Pino Pissimo	M I O R5	M M intercont A R5 Uuster Multi-core Fulmine Mr. Wol	M M nect R5 R5	M I R5	M M M interconnect A R5 R5 cluster Multi-cluster • Hero	
Accelera	tors						
HW((convol	CE ution)	Neuros (M	stream L)	HWC (cryp	rypt oto)	PULPO (1 st order opt)	

Power Management in HPC

ControlPULP Hardware and Software Architecture

ControlPULP Validation

- PULP¹-based design
- Scalable architecture:
 - Multi-core cluster with private FPU, up to float16 and bfloat precision
 - RISC-V fast-interrupt controller: CLIC
 - DMA for 2-D strided access from PVT sensor registers
- Industry standard power management interfaces:
 - **PMBUS**: Voltage Regulators control slow/multi
 - **AVSBUS**: Voltage Regulators control fast/p2p
 - **SPI**: Inter-socket communication (Multi ControlPULP)
 - ACPI/MCTP: Motherboard/BMC interface (OpenBMC)
- LERST DIORULA

ETH zürich

SCMI: OS PM governors and telemetry

Out-Of-Band

In-Band

Control Firmware

Three main control tasks²:

- 1. Periodic Control Task (PCT)
- 2. Fast Power Control Task (FPCT)
- **3.** Advanced Learning Control Task (ALCT):
 - Control Action: computational block
 - In-Band transfers:

Hzürich

- (i) PVT data gathering- AXI4
- (ii) Doorbell-based SCMI response
- Out-Of-Band transfers:

(i) VRMs power consumption – PMBUS/AVSBUS (I2C/SPI)(ii) BMC interaction – I2C/MTCP

Control Firmware

Three main control tasks²:

- 1. Periodic Control Task (PCT)
- 2. Fast Power Control Task (FPCT)
- 3. Advanced Learning Control Task (ALCT)
- **Control Action:** computational block Hzürich
 - In-Band transfers:
 - (i) PVT data gathering- AXI4
 - (ii) Doorbell-based SCMI response
 - Out-Of-Band transfers:

(i) VRMs power consumption – PMBUS/AVSBUS (I2C/SPI) (ii) BMC interaction – I2C/MTCP

Software stack

Complete software stack relying on a Real-Time operative system, FreeRTOS

ETHZürich

ControlPULP SW stack

Complete software stack relying on a Real-Time operative system, FreeRTOS

ControlPULP SW stack

15

03/05/2022

² https://github.com/openhwgroup/cv32e40p

Architecture

03/05/2022

Power Management in HPC

ControlPULP Hardware and Software Architecture

ControlPULP Validation

ControlPULP validation

Standalone RTL validation

Pipeline Needs Jobs 38 Tests 128

- Event-based RTL simulation ecosystem
- GVSOC Architectural simulation⁴ ecosystem

⁴ N. Bruschi et al., "GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors", 2021

Automated Continuous Integration regression check – RTL based

Summary	5 failures	0 errors	96.09% :	success rate		36445.43
Jobs						
dot	Duration	Failed	Errors	Skipped	Passed	Total
rt_soc_interconnect	92.02s	0	0	0	3	3
rt_coremark	1910.30s	0	0	0	1	1
rt_tcdm	656.33s	1	0	0	2	3
rt_mchan	10923.38s	4	0	0	9	10
rt_i2c_slv_irq	47.05s	0	0	0	1	1
rt_avs	50.43s	0	0	0	1	1
rt_sensors_rx	1648.22s	0	0	0	3	3

 \checkmark

 $\overline{}$

ETH zürich

ControlPULP validation

⁴ N. Bruschi et al., "GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors", 2021

- 1. Standalone RTL validation
- GF22 synthesis: 500 MHz, 9.1 MGE
- **Estimated < 1%** of a HPC server processor in modern technology node

Table 1: ControlPULP post-synthesis area breakdown on GF22FDX technology.

Unit		Area	Area	Percentage
N		$[\mathbf{mm}^2]$	[kGE]	[%]
Cl	uster unit	0.467	2336.7	25.5
S	SoC unit	0.135	675.9	7.39
\mathbf{L}	1 SRAM	0.119	595.7	6.51
\mathbf{L}	$2 \mathrm{SRAM}$	1.108	5542.1	60.6
	Total	1.830	9150.3	100

⁵ https://github.com/pulp-platform/pulp/hero

ControlPULP validation

2. FPGA-based Hardware-in-the-Loop emulation

- Cycle-accurate/architectural simulators not suited for
- Heterogeneous approach with FPGA HIL emulation, based on PULP HERO⁵

ETHZürich

ControlPULP validation

- 2. FPGA-based Hardware-in-the-Loop emulation
- Real-Time plant emulation: TDP budget control over 36-cores

03/05/2022

ControlPULP validation

2. FPGA-based Hardware-in-the-Loop emulation

- EVLPT motherboard from EPI partners:
 - Prototype motherboard for the future Rhea processor

 \checkmark

 \checkmark

 \checkmark

 \checkmark

WIP

- VRMs, BMC, Intel FPGA for power sequencing

Test off-chip peripherals:

ACPI power sequencing test
 PMBUS test to BMC, VRMs, IBC
 I2C Slave (MCTP) test from BMC

4. AVSBUS test to VRMs control5. Inter-socket (Multi ControlPULP) test6. More advanced communication

Conclusion

- First RISC-V Power Controller for current and future HPC processors, based on PULP
- Complete HW/SW codesign and validation platform

Roadmap

- Test chip tapeout in 65 nm to further validate the HW
- Multi-FPGA emulation for inter-socket validation
- More advanced and distributed HW/SW power management

ETH zürich

The ControlPULP Design Team:

Aknowledgment

EUPILOT European Processor Initiative REGALE Open Architecture for Exascale Supercomputers

 Giovanni Bambini, Robert Balas Corrado Bonfanti, Antonio Mastrandrea, Davide Rossi, Simone Benatti, Luca Benini

The european-project-initiative has received funding from the European High Performance Computing Joint Undertaking (JU) under Framework Partnership Agreement No 800928 and Specific Grant Agreement No 101036168 (EPI SGA2). The JU receives support from the European Union's Horizon 2020 research and innovation programme and from Croatia, France, Germany, Greece, Italy, Netherlands, Portugal, Spain, Sweden, and Switzerland.

The European PILOT project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No.101034126. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Spain, Italy, Switzerland, Germany, France, Greece, Sweden, Croatia and Turkey.

ER STOOLORU

zürich

This REGALE-project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 956560. The JU receives support from the European Union's Horizon 2020 research and innovation programme and Greece, Germany, France, Spain, Austria, Italy.

26

03/05/2022

Parallel Ultra Low Power

Luca Benini, Davide Rossi, Andrea Borghesi, Michele Magno, Simone Benatti, Francesco Conti, Francesco Beneventi, Daniele Palossi, Giuseppe Tagliavini, Antonio Pullini, Germain Haugou, Manuele Rusci, Florian Glaser, Fabio Montagna, Bjoern Forsberg, Pasquale Davide Schiavone, Alfio Di Mauro, Victor Javier Kartsch Morinigo, Tommaso Polonelli, Fabian Schuiki, Stefan Mach, Andreas Kurth, Florian Zaruba, Manuel Eggimann, Philipp Mayer, Marco Guermandi, Xiaying Wang, Michael Hersche, Robert Balas, Antonio Mastrandrea, Matheus Cavalcante, Angelo Garofalo, Alessio Burrello, Gianna Paulin, Georg Rutishauser, Andrea Cossettini, Luca Bertaccini, Maxim Mattheeuws, Samuel Riedel, Sergei Vostrikov, Vlad Niculescu, Hanna Mueller, Matteo Perotti, Nils Wistoff, Luca Bertaccini, Thorir Ingulfsson, Thomas Benz, Paul Scheffler, Alessio Burello, Moritz Scherer, Matteo Spallanzani, Andrea Bartolini, Frank K. Gurkaynak,

and many more that we forgot to mention

http://pulp-platform.org

@pulp_platform

ControlPULP validation

- Event-based RTL simulation ecosystem
- GVSOC Architectural simulation⁴ ecosystem
- Multi-core and DMA centric PCF speedup: 5x than single-core execution

 $\overline{}$

 \checkmark

⁴ N. Bruschi et al., "GVSoC: A Highly Configurable, Fast and Accurate Full-Platform Simulator for RISC-V based IoT Processors", 2021