Introducing CHERI-RISC-V

Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann

Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel,
Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood,
Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston,
Robert Kovacsics, Ben Laurie, A. Theo Markettos, |. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar,
Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright, Philip Paeps,
Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi,
Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk,
Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week

Paris, 3-5 May 2022

71N Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force lJNI\;E RSITY OF
=i Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the X R
' author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. CA M BRI DG E

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI |-18-C-0016 (“ECATS”),and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

R
Introduction: What is CHERI?

 CHERI=Capability Hardware Enhanced RISC Instructions

* CHERI is a new hardware technology that mitigates software
security vulnerabilities

* Developed by the University of Cambridge and SRI International
starting in 2010, supported by DARPA and others

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013

* Arm collaboration from 2014
* CHERI for RISC-V is now mature, but being refined
* Today’s talk:

* Why develop CHERI?

* What is CHERI and how does it work?

* What software will | be able to run on it?

* What sort of evaluations have been run to date?

3 & UNIVERSITY OF

&¥ CAMBRIDGE

-
Why develop CHERI?

“Buffer overflows have not objectively gone down in the last 40 years.
The impact of buffer overflows have if anything gone up.”
lan Levy, NCSC
* Matt Miller (MS Response Center) @ BlueHat 2019:
* From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.
* First place: spatial safety
* Addressed directly by CHERI
* Second place: use after free

* Our recent work exploiting CHERI capability validity tags to precisely find
pointers

@8 UNIVERSITY OF
P CAMBRIDGE

R
More Motivation — Chromium Browser Safety

“70% of our serious security bugs are memory safety problems”

www.chromium.org/Home/chromium-security/memory-safety

High+, impacting stable

Security-related assert

Use-after-free
36.1%

Other

ther memory unsafety
...!... UNIVERSITY OF
¥ CAMBRIDGE

HOW THE HEARTBLEED BUG WORKS:

Example 1

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY "POTATO" (b LETTERS).

) er Meg wants these 6 letters: POTATO

o
O

ser Meg wants these 6 letters: POTATO.

SERVER, ARE YOU STiLL THERE?
IF 50, REPLY “BIRD" (4 LETTERS).

User Meg wants
) ese 4 letters: BIRD
(o}
? f .(>

)
O
)

1HS€ | /Wod'padyx//:d1ay :234nos

58 UNIVERSITY OF

&% CAMBRIDGE

HMM. ..

er Meg wants these 500 letters: HAT.

HAT. Lucas requests the "missed conne
ctions” page. t-_\-e(admmst.mtor)m

ts to set server’s master key to "148
35038534, Isabel wants pages about '
mkmhnrmmla\q User Karen
axt.-;wdwxpaaxxmtpa&wmw

/FSE | Jwod pdx//:d1y :924nos

5 UNIVERSITY OF
4P CAMBRIDGE

HAT. Lucas requests the ‘missed conne
ctions” page. Eve (administrator) wan
ts to set server’'s master key to ' 148
350385347, Isabel wants pages about '
gnakes but not too long". User Karen
wants to change account password to ©

Meg wants the

-
Went wrong! How do we do better?

e (Classical answer:

* The programmer forgot to check the bounds of the data structure
being read

* Fix the vulnerability in hindsight — one-line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

* Our answer:
* Preserve bounds information during compilation

* Use hardware (CHERI processor) to dynamically check bounds
with little overhead and guarantee pointer integrity & provenance

B UNIVERSITY OF
» CAMBRIDGE

-
Example 2: how to reduce the attack surface!?

* The software attack surface keeps getting bigger
* Applications just keep getting larger
* Huge libraries of code aid rapid program development
* Everything is network connected

* This aids the attacker:an expanding number of ways to break in

@8 UNIVERSITY OF
P CAMBRIDGE

-
CHERI solution: application-level least privilege

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also

° ego o °] UNIVERSITYOF
as-yet undiscovered classes of vulnerabilities and exploits "Fl“

4P CAMBRIDGE

-
Principles CHERI helps to uphold

* The principle of intentional use

* Ensure that software runs the way the programmer intended,
not the way the attacker tricked it

* Approach: guaranteed pointer integrity & provenance, with
efficient dynamic bounds checking

* The principle of least privilege
* Reduce the attack surface using software compartmentalization
* Mitigates known and unknown exploits

* Approach: highly scalable and efficient compartmentalization

B UNIVERSITY OF
P CAMBRIDGE

-
CHERI hardware adds a new type — the Capability

* CHERI Capability = bounds checked pointer with integrity

* Held in memory and in (new or extended) registers

hidden validity/integrity tag

permissions compressed bounds (top, bottom)

t— |28-bits

address

—

\ J

Y
64-bits
3 = UNIVERSITY OF

4P CAMBRIDGE

A new type — the Capability

virtual memory

permissions compressed bounds (top, bottom)

address

mlm UNIVERSITY OF
4P CAMBRIDGE

-
Processor primitives for software security

Software configures and uses capabilities to continuously
_/ \ enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security
< . constructs such as compartment isolation

Applications

Systems software

Compilersand toolchain CHERI capabilities are an architectural primitive that

compilers, systems software, and applications use to constrain
Instruction-Set Architecture their own future execution

(ISA)
. . i The microarchitecture implements the capability data type
Microarchitecture | B : :
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,
monotonicity, and provenance validity

3 B UNIVERSITY OF
P CAMBRIDGE

-
Two key applications of the CHERI primitives

. Efficient, fine-grained memory protection for C/C++
* Strong source-level compatibility, but requires recompilation
* Deterministic and secret-free referential, spatial, and temporal memory safety
* Retrospective studies estimate %3 of memory-safety vulnerabilities mitigated
* Generally modest overhead (0%-5%, some pointer-dense workloads higher)
2. Scalable software compartmentalization
* Multiple software operational models from objects to processes
* Increases exploit chain length: Attackers must find and exploit more vulnerabilities

* Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

B UNIVERSITY OF
P CAMBRIDGE

-
CHERI prototype software stack

* Complete open-source software stack from bare metal up: compilers, toolchain,
debuggers, hypervisor, OS, applications — all demonstrating CHERI

* Rich CHERI feature use, but fundamentally incremental/hybridized deployment
* Aim: Mature and highly useful research and development platform for Morello

Open-source application suite (KDE, X1 I,WebKit, Python, OpenSSH, nginx, PostgresQL ...)

CheriBSD/Morello (funded by DARPA and UKRI) Android (Arm) Linux (Arm)
* FreeBSD kernel + userspace, application stack (Morello only) (Morello only)
* Kernel spatial and referential memory protection
* Userspace spatial, referential, and temporal memory protection
* Co-process compartmentalization
* Intra-process compartmentalization
* Morello-enabled bhyve Type-2 hypervisor

* ARMvV8-A 64-bit binary compatibility for legacy binaries /" Baseline CHERI
Clang/LLVM from
CHERI-extended Google Hafnium hypervisor SRI/gCambridge;
Morello
CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB 4\ :ﬂanftjt;j:atz

FARR
SRl

International
N

58 UNIVERSITY OF
CAMBRIDGE

Microsoft security analysis of CHERI| C/C++

SECURITY ANALYSIS OF CHERI ISA

Nicolas Joly, Saif ElSherei, Saar Amar — Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such
as Cand C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited
vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit
extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag
table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI's hybrid mode
could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as
it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization 115. In this document, we will review only the memory
safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

CHERI’s ISA is not yet stabilized. We reviewed the current revision 7, but some of the protections such as executable pointer sealing
is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations
requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-
allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

o Pure-capability vs hybrid mode

e Chosen heap allocator’s resilience

e Sub-allocation bounds compilation flag

e Linkage model (PC-relative, PLT, and per-function .captable)
e Extensions for additional protections on execute capabilities
e Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be
less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019
and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a
security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that
automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of
vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal
safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated
vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,
but this combination means CHERI looks very promising in its early stages.

1|Page
Microsoft Security Response Center (MSRC)

Microsoft Security Research Center (MSRC) study analyzed all
2019 Microsoft critical memory-safety security vulnerabilities

* Metric:"Poses a risk to customers — requires a software
update”

* Vulnerability mitigated if no security update required
Blog post and 42-page report

* Concrete vulnerability analysis for spatial safety

* Abstract analysis of the impact of temporal safety

* Red teaming of specific artifacts to gain experience

CHERI,“in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

UNIVERSITY OF
CAMBRIDGE

18

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

-
CHERI desktop ecosystem study: Key outcomes

Developed:

* 6 million lines of C/C++ code
compiled for memory safety; modest
dynamic testing

 Three compartmentalization
case studies in Qt/KDE

Evaluation results:

* 0.026% LoC modification rate
across full corpus for memory safety

* 73.8% mitigation rate across full
= I . corpus, using memory safety and
L 1l compartmentalization

http://www.capabilitieslimited.co.uk/pdfs/202 109 | 7-capltd-cheri-desktop-report-version | -FINAL.pdf _
' ' ' T 9 T BB UNIVERSITY OF

&% CAMBRIDGE

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

L
Where to learn more!?

* Project web pages:

An Introduction to CHERI * http://www.cheri-cpu.org/

e An Introduction to CHERI, Technical

Architectural capabilities and the

CHERI ISA Report UCAM-CL-TR-941, Computer
CHERI microarchitecture Laboratory, September 2019
ISA formal modeling and proof
Software construction with * Capability Hardware Enhanced RISC
CHERI Instructions: CHERI Instruction-Set
LIRS @Rl Architecture (Version 8), UCAM-CL-TR-
06 orcarc 951, October 2020

extensions
Application-level adaptations - CHERI C/C++ Programming Guide,

UCAM-CL-TR-947, June 2020

20

ml... UNIVERSITY OF
4P CAMBRIDGE

http://www.cheri-cpu.org/

CHERI research and development timeline

Nov. 2012: < Sep. 2014: MIT LI Sep. 2015:
Sandboxed code on | S team live Heartb), pure-capa
Oct. 2011: Capability CheriBSD; live ’) mitigation demo proce
microkernel runs FPGA-base Trojan A — icrokernel
sandbox on FPGA Jul. 2012: LLVM Mmitigation demo . ! _ Broadcom,
generates - rich, G
[CHER 0008 o - / July2019: Sep.2019: ISCF DSbD
y ’ e e ‘ 3 CheriBSD experimental CHERI-ARM
et === | un.20Z g mporal CPU, SoC, and board

B e CheriBSD capability T “Morello”

proposal
submitted 1@&)« smtchmg

- S

L ! B
' ' 2011 / ' 2012 ' 2019 ,1
3 ' : ~ Jun. 2019:
Over 150 researcher years of ~ lccozoris .
Oct: 2010: CheriRTOS ; CHERI ISAv7
CTSRD p;Oi oyl : 32-bit ISAS - formal semantics,
begins work | effort by Cambridge & SRI = CHER concentat,
Nov. 2011: . : ‘ : neutrality, temporal
FPGA tablet + Many engineer years by Arm _ Aol safety, RISC-V
C pointer
LAW 2010: CHERI-specific i 5 ;
Capabilities microkernel 2017: ASPLOS 2019:
revisited gged Pure-capability
UNIX userspace
3 IEEE TCS 2019:
RESOLVE 2012: : ompressed MICRO 2019:
Hybrid MMU/ éﬁ:‘gﬁﬁow' capabilities Temporal memory-

capability mg safety feasibility study

Years |-2: Research platform, protoc ear : Efficiency, CheriABI/C/C++/linker, ARMv8-A
Years 2-4: Hybrid C/OS model, com

Years 8-9: RISC-V, temporal safety, formal proof

I H UNIVERSITY OF
P CAMBRIDGE

‘Nt mode

21

Bridging the commercialisation chasm

P|4OM [e3J Ul
uaaoJd 3onpodd 6 TYL

P|1OM [eaJ Ul pailjenb pue
pa39|dwod 31onpodd :8TY.L

&S

R

Industry

P|1OM |B3J Ul UOJBIISUOWDP
adfyoj0ud /1YL

ﬂo V5d4 Uo saossadoud [eaaAas
‘ureyd|003 ‘SO IIN4 :9TY.L

UIeYd|00) ISOpOoW YIIM
VOdd UO UONEPI[BA:GTY L

s3jnsadJ |eniul
’3 suonEINWIS 1Y L

3doou0) Jo Jooud € THL

3da5u0d A3ojouyd9] (7 THL

so|didulad diseg : | YL

University

Fundamental

Technology
Principles

Proven

BB UNIVERSITY OF
&¥ CAMBRIDGE

22

First we made an FPGA-based hardware tablet

Inact. 14M Wi

6K

@ 18476K

root 8 18476K
root 2 8 19488K
root 8 11184K
root 2 8 18476K

-1 ir
148K Buf.

RES STATE
8B8K RUN

t
8

a
up @

errupt,

98N Free

0.@

WCPU
08. o

COMMAND

UNIVERSITY OF
CAMBRIDGE

-
Open Source Stack: Research and Deployment

* CHERI-RISC-V developed open source:

* Documentation (ISA ref, architecture overview, etc)

* Specification in Salil Project URL:
. . http://cheri-cpu.org/
* Simulators: Spike, Qemu links to:

https://www.cl.cam.ac.uk/ research/security/ctsrd/

* Clang/LLVM toolchain
* OS support: CheriBSD, CheriFreeRTOS, CheriRTEMS

* Hardware implementations

* 3-stage, 5-stage and OoO cores on FPGA including AWVS Fl

UNIVERSITY OF
P CAMBRIDGE

-
Open Source CHERI-RISC-V Cores

* Piccolo 32b microcontroller:
https://github.com/CTSRD-CHERI/Piccolo

 Flute 64b/32b scalar core:
https://github.com/CTSRD-CHERI/Flute

* Toooba 64b out-of-order core based on MIT Riscy-OOO core:
https://github.com/CTSRD-CHERI/Toooba

5 UNIVERSITY OF
4P CAMBRIDGE

25

https://github.com/CTSRD-CHERI/Piccolo
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Toooba

5 !| ”l l!lore”o !rogrom

Arm Morello Demonstrator Board

BB UNIVERSITY OF
&% CAMBRIDGE

L
Conclusions

* CHERI protections are completely deterministic and solve fundamental
security issues

* CHERI provides the hardware with more semantic knowledge of what the
programmer intended

* Toward the principle of intentionality
* Efficient pointer integrity and bounds checking

* Eliminates buffer overflow/over-read attacks (finally!)
* Provide scalable, efficient compartmentalisation

* Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks

* Transitioning the technology via CHERI-RISC-V and Arm Morello

B UNIVERSITY OF
» CAMBRIDGE

27

The CHERI-RISC-V Extension

Jessica Clarke, Peter Rugg, David Chisnall, Jonathan Woodruff, Alexandre Joannou
Robert N. M.Watson, Simon W. Moore, Peter G. Neumann, Hesham Almatary, Alasdair Armstrong, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo,

Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Mark Johnston, Robert Kovacsics, Ben Laurie,
A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Prashanth Mundkur, Edward Napierala, George Neville-Neil,
Robert Norton-Wright, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Peter Sewell,
Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, and Hongyan Xia

University of Cambridge and SRI International

RISC-V Week

Paris, 3-5 May 2022

71N Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force B UNIVERSITY OF
=i Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
' author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. CA M BRI DG E

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI |-18-C-0016 (“ECATS”),and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

29

CHERI Overview

CHERI capability words are hardware-defined pointer structures that include

bounds and permissions.

Tags distinguish capabilities and
data in registers and memory

Capabilities are preserved atomically in both registers and memory virtual memory

Capabilities can be dereferenced to load/store data

(and other capabilities)

All capabilities must be derived |:|
from more permissive capabilities

compressed bounds (top, bottom) I

address

30 m!n UNIVERSITY OF

4P CAMBRIDGE

-
Basic Requirements

* Load and store capabilities (2 * XLEN + tag) | "“s¢move Capab”‘t‘eSJ

atomically

and permissions!?

* Load and store through capability pointers | Whatare my boundsJ

o JumP to capabilities Change PC with its bounds
and permissions (ie PCC)

* Manipulate capability metadata in registers (bounds, permissions)

* Derive narrower capabilities
* Read capability fields
* Pointer arithmetic

5 UNIVERSITY OF
CAMBRIDGE

31

-
CHERI-RISC-V Load and Store Capabilities

* Used reserved LQ/SQ for 128-bit capabilities

When using 64-bit capabilities in RV32, the RV64 instructions LD and SD are reused to behave as
LC and SC respectively.

31 25 24 20 19 1514 1211 7 6 0 MoveS ZXXLEN,
imm rsl [0x3| «cd 0x3 LC cd, rs1, imm (rv32) regardless of tag value;
imm[11:5] cs2 rsl 0x3 |[imm][4:0] 0x23 SC ¢s2, rs1, imm (rv32) used for memcpy
4
When using 128-bit capabilities in RV64, the RV 128 instructions LQ and SQ (anticipated encoding)
are reused to behave as LC and SC respectively.
31 25 24 20 19 15 14 12 11 7 6 0
imm rsl | 0x2| «od Oxf LC cd, rs1, imm (rv64) Capability words must
: : be aligned (unlike data)
imm[11:5] cs2 rsl 0x4 |imm|[4:0] 0x23 SC ¢cs2, rs1, imm (RV64) .
due to tag constraints
: : e 4
* Is this rv128? Not quite; will discuss later...
32 2B UNIVERSITY OF

&9 CAMBRIDGE

-
Load and Store through Capability Pointers

* New memory instruction encodings are expensive due to large immediates
* Use a mode bit for standard loads and stores to expect a capability address operand

* Common cases: all integer pointers OR all capability pointers (depending on ABI)

* Sacrifices intentionality in machine code
Could we decide
* Mode bit is in PCC, so is naturally restored on function return dynamically based on tag?

Intentionality says no!

* Integer pointers use Default Data Capability (DDC) bounds

Capability pointers use their own bounds 4
* Also add loads and stores explicit to each kind of pointer (with no immediate)
Uncompressed instructions affected by capability mode Compressed instructions affected by capability mode
Integer load LB LH LW LD LQ Control flow CJALR CJR
Integer load (unsigned) LBU LHU LWU LDU Compressed integer load C.LW CLD C.LWSP C.LDSP
Integer store SB SH SW SD SQ Compressed integer store C.Sw CSD C.SWSP C.SDSP
Floating-point load FLW FLD FLQ Compressed floating-point load C.FLW C.FLD C.FLWSP C.FLDSP
Floating-point store FSW FSD FSQ Compressed floating-point store CFSW CFSD C.FSWSP C.FSDSP
Atomic LR SC AMOSWAP AMOADD AMOAND
Atomic (cont) AMOOR AMOXOR AMOMAX AMOMIN
Address calculation AUIPC® 33 B UNIVERSITY OF
International

CAMBRIDGE

N

S ALl
Ssl= ©

-
CHERIMIPS dJ Split or Merged Register File

split register file

$ra $c3| v $ra $c31 v

$al $c4 v O R $al $c4 v

$a0 $c3 - $a0 $c3 v
Integer register file Capability register file

Split register file Merged register file

* New register file vs. * So-far only implemented merged

Unified (& extended) register file
* Better scientific comparability with the

* CO holds the NULL CaPabilit)’ baseline Losing the chance to add more J

registers at almost no encoding cost!

* CHERI-RISC-V supports split or merged

e Instructions are identical * Less context to save and restore

* Only semantics are changed y UNIVERSITY OF

% CAMBRIDGE

not just data!

* Use explicit new jump to expect capability pointers

Capabilities can point to code,J J um P to Capabi I iti es

* Why not reuse the old jumps, repurposed with the mode bit!?
Because the mode bit is flipped by jumping to a capability!

* Helps intentionality, and encoding is cheap (just two operands)

* Compressed jumps do use the mode bit

Can't jump into capability mode with
a compressed jump; only out.

Ox7f 0Oxc csl 0x0 cd 0x5b
Ox7f Ox14 csl 0x0 cd 0x5b
Ox7e cs2 csl 0x0 0Ox1 0x5b

35

JALR.CAP cd, cs1

JALR.PCC cd, cs1

CInvoke cs1, cs2

2B UNIVERSITY OF
&¥ CAMBRIDGE

-
Capability Manipulation Instructions

C.1.2 Capability-Modification Instructions

31 25 20 19 15 14 1211 7 6 0

° Legacy integer instructions Produce upper Product of merged 0xb cs2 csl [0x0| cd 0x5b CSeal cd, csi, cs2
bits of the NULL capability (tag cleared) register file! (‘)’d i i gg j gz: Cunseal °";j°s"°52
X IS cs X C X CAndPermcd, csi, rs2
* Pointer arithmetic uses dedicated instructions (IncOffset) PO R B
rather than reusing legacy ones (ADD) 10 | w2 | ool om0 od | omsb | csetnaar o, ost. o2
. 0x11 1s2 csl 0x0 cd 0x5b CIncOffset cd, cs1, rs2
* Makes pointer arithmetic intentional imm(110] | esl |Ox1| cd | Oxb | cincofsettmcd,cst, imm
0x8 rs2 csl 0x0 cd 0x5b CSetBounds cd, cs1, rs2
* Could help micro-architectural optimisation 00 | m2 | ol |0:0] cd | Oxb | csetsoundsexact o cst, 12
(InCOffset must CheCI(representability) uimm[11:0] csl | 0x2 cd 0x5b CSetBoundsImm cd, cs1, uimm
0x7f 0xb csl 0x0 cd 0x5b CClearTag cd, csi
* Throw exception vs. clear tag on illegal transformations S O N T T D
x1le cs. cs X [¢ X opyType cd, cs1, cs
o . . o . Ox1f cs2 csl 0x0 cd 0x5b CCSeal cd, cs1, cs2
* ThrOWIng an exceptlon glves PreCISe debugglng Ox7f 0Ox11 csl 0x0 cd 0x5b CSealEntry cd, cs1
* Clearing the tag is more convenient for software and C.13 PointerArithmetic Instractions
micro-arChiteCture’ and is also Safer . 0x12 T cs2 T csl : M()x()]2 ; rd T 0x5b CToPtrrd, csi, cs2
' . . . 0x13 rs2 csl 0x0 cd 0x5b CFromPtr cd, csi1, rs2
* We're moving from exceptions to tag clearing x4 | o2 | ol |0x0| | Ooxsb | csubrd,ostcs2
0x7f Oxa csl 0x0 cd 0x5b CMove cd, csi

36

Morello is tag clearing J BB UNIVERSITY OF

4P CAMBRIDGE

-
Page Table Permissions

* Can track "capability free" pages to support sweeping for revocation

* Also supports experimental capability load detection

Possibly more complex than
commercially necessary for
experimentation...

/4
63 62 61 60 59
Five new bits for sv39 Page Table Entries (PTEs): | CW | CR | CD |CRM|CRG
PTE bits for capability stores (mirrors W & D flags) PTE bits for capability loads
CW CD Behavior CR CRM CRG Behavior
0 X Trap on capability stores (exception code 0x1B) 0 0 0 Capability loads strip tags on loaded result
1 0 Capability stores atomically raise CD or fault (as above) 0 1 0 Capability loads fault (exception code 0x1A)
1 1 Capability stores permitted 0 X 1 Reserved for future use
1 0 0 Capability loads are unaltered
1 0 1 Reserved for future use
1 1 X Reserved for generational load barriers

37

B UNIVERSITY OF
&¥ CAMBRIDGE

CSRs and o W LR S

. cycle(h) Read-Only
0x8C0 User capability control and status time(h) Read-Only

register (uccsr) instret(h) Read-Only

S P eC i a I C ad P d b i I ity Re gi Ste 'S 009C0 Supervisor capability control and status hpeounter(h) Read.Only

register (sccsr)

fflags Read-Write
M 0xBCO0 Machine capability control and status W
[fr Read-W;
PCC and D DC are u n Ive rsal Iy register (mccsr) fcsmr R::d-wgtz
. bI CSR DDC in a GPR causes new dependencies . .]
aCCessIDie S for all non-capability memory operations Sp601al Capablhty Registers
Register Modes Access Reset Extends
o D D C an d PC C NO I d th e "al m ighty 0 Program counter capability (PCC) U,SSM RO 00 PC
1 Default data capability (DDC) U, S, M - 00 -
e M
Capabl I Ity on reset 4 User trap code capability (UTCC) U, S, M ASR 00 utvec
5 User trap data capability (UTDC) U,S,M ASR 0 -
. o e 6 User scratch capability (UScratchC) U,S,M ASR 1] -
[
SC ratc h regl Ste I'S Pe r p Fivi I ege I evel 7 User exception PC capability (UEPCC) U, S,M ASR 00 uepc

To gain permissions on ring change J

ol . . 12 Supervisor trap code capability (STCC) S, M ASR 00 stvec
14 Supervisor scratch capability (SScratchC) S, M ASR 0 -
. . 15 Supervisor exception PC capability (SEPCC) S, M ASR 00 sepc
* CSR whitelist when Access System
. . . 28 Machine trap code capability (MTCC) M ASR 00 mtvec
Regl sters (AS R) IS hot set In PC C 29 Machine trap data capability (MTDC) M ASR 0 -
30 Machine scratch capability (MScratchC) M ASR 0 -
Allows compartmentalisation in the 31 Machine exception PC capability MEPCC) M ASR 00 mepc
kernel and a user-space supervisor 38 BB UNIVERSITY OF
&% CAMBRIDGE

-
Both RV32 and RVé64 are supported

* RV32 (CHERI64) and RV64 (CHERII28) are specified

Research is ongoing for mixed-widthJ

implementations

* Would be interesting to experiment with RV64 with CHERI64
(sv32) to learn about implications of RVI128 in CHERI 128

@8 UNIVERSITY OF
P CAMBRIDGE

39

-
CHERII28 Relationship with RV 128

* Not quite RV128
 Added Load and Store Quad instructions
* But lacking 128-bit arithmetic instructions

* If an implementation had both, would we want new loads and
stores to preserve intentionality! (New tag-clearing LQ/SQ)

sv64 (64-bit virtual addresses)

with RV 128 is not unreasonable;
i.e. XLEN = 2x"VA-LEN"

4

@8 UNIVERSITY OF
P CAMBRIDGE

40

L
Conclusions

* CHERI academic research has moved fully to the CHERI-RISC-V
architecture

* Lots of implementations:

The Sail-CHERI-RISC-V model (CHERI-64/CHERI-128) CHERI Piccolo (CHERI-64)
QEMU simulator (CHERI-64/CHERI-128) CHERI Flute (CHERI-64/CHERI-128)
CHERI Ibex (CHERI-64) (not up-to-date) CHERI RiscyOO CHERI-RISC-V (CHERI-128)

* Fully featured LLVM compiler support

* CheriBSD with full software stack building in pure-capability mode

@8 UNIVERSITY OF
P CAMBRIDGE

41

Four CHERI-RISC-V Micro-Architectures

Peter Rugg, Jonathan Woodruff, Alexandre Joannou, lvan Ribeiro,
Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann

Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel,
Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood,
Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Mark Johnston, Robert Kovacsics,
Ben Laurie,A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur,
Steven . Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu,
Allison Randal, Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell, Thomas Sewell,
Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week

Paris, 3-5 May 2022

71N Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force IJNI\;E RSITY OF
=i Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the X R
I author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. CA M BRI DG E

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI |-18-C-0016 (“ECATS”),and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

43

o
Contents

* How to add CHERI to a core
* Shared components

* Tag controller

* Compression library
* Four implementations

* Per-core optimizations

@8 UNIVERSITY OF
&¥ CAMBRIDGE

-
CHERI-RISC-V Microarchitectural Changes

* Extend decode, registers, arithmetic, and memory access for
capabilities

* Capability CSRs and new capability exception behaviors
* Widen caches and add tag support

* Tagged AXI interconnect

* Performance counters

* Analyze performance, identify bottlenecks, and optimize
microarchitecture to meet timing and performance goals

B UNIVERSITY OF
» CAMBRIDGE

-
CHERI-RISC-V Pipeline Changes

Capability
manipulation Capability offsets and
Fetch address distinguished added in parallel DDC bounds legacy
from Sandb?X offset (PC) WlthlALU memory Operations
| | | |
Instruction —»| Decode || Execute |—» Memory —» Writeback
Fetch Access
A
| J
Y
| Bounds check
added in parallel
Branch)
N PC with cache access
Predict
' |
PC extended to be)
a capability General Registers extended
Purpose — with capability
Registers metadata and tags

2B UNIVERSITY OF
&¥ CAMBRIDGE

46

-
CHERI-RISC-V Reused Components

* AXlTagController
Tag controller module manages combining tags with data

* Capability encoding library
Memory, register, and pipeline capability formats with functions for
each

* TestRIG testing framework

CHERI instruction definitions and templates for testing deep
capability states

@8 UNIVERSITY OF
P CAMBRIDGE

47

-
Tagging Capabilities

* Capabilities have a hidden validity tag
* In registers and memory
* Tag bit is critical to security
* Conventional operations (arith, memory) clear the tag

* Only capability instructions preserve the tag and guarantee
monotonic decrease in rights

* One hidden bit per |128-bits avoids using other integrity measures
(no crypto needed...)

@8 UNIVERSITY OF
P CAMBRIDGE

48

R
Propagating tags from registers to DRAM

I = tag storage

* Tags stored in registers and
caches with data to ensure
consistency

LI l-cache LI D-cache °

Off-chip storage:

LL cache * Tags stored in upper 1% of
commodity DRAM

DRAM controller Tag Cache * Tag cache per DRAM controller
reduces DRAM traffic

off-chip DRAM * No consistency issues

49

...l... UNIVERSITY OF
4P CAMBRIDGE

Hierarchical Tag Compression

* Size tag cache line length to 64-byte DDR4 burst transfer size
= one line covers tags for 8KiB of memory (128-bit capabilities)

* Many lines don’t contain tags (code, large blocks of data, disk cache,
etc.)

* So handling tag sparseness is important

* Only want to pay for tagging when needed

50

@8 UNIVERSITY OF
P CAMBRIDGE

-
Tag Compression

* 2-level tag table
* Each bit in the root level indicates all zeros in a leaf group
* Reduces tag cache footprint

* Amplifies cache capacity

| bit per 8KiB of data: 0 for no tags set

. root table
Tags for a
8,KIB ?f dat? leaf table
64 bytes

@8 UNIVERSITY OF
P CAMBRIDGE

51

Capability Compression

Capabilities encode at least 3 64-bit fields:
63 0
Top

Address

But we can encode the Top and Bottom relative to the Address:

63 Top 0
Address

—— < Exponent: [l
* Larger objects require greater alignment

* Address must be “near” the Top and Bottom

52

B UNIVERSITY OF
4P CAMBRIDGE

-
Capability Compression Shared Library

* Capabilities partially decompressed in stages throughout pipeline

* Shared library between all four implementations

Architectural “CHERI-concentrate” format

Memory Capability 128 bits

l XOR + Shift + Multiplex

“Exponent” and “Mantissa” extracted

Register Capability 152 bits

l Comparisons

Pipeline Capability 162 bits

I Compression edge-cases identified

58 UNIVERSITY OF
CAMBRIDGE

L
Baseline Processors

Piccolo - Bluespec
32-bit 3-stage in-order microcontroller (Bluespec Inc.)
* Ibex - Verilog

32-bit highly area-optimised microcontroller (lowRISC)

Flute - Bluespec
64-bit 5-stage in-order microcontroller (Bluespec Inc.)
* Toooba - Bluespec

64-bit out-of-order superscalar (Bluespec Inc.) based on RiscyOO
(MIT)

@8 UNIVERSITY OF
P CAMBRIDGE

-
CHERI-RISC-V Scaling Across Cores

* CHERI Piccolo and CHERI Ibex — Power and Area
Small core (no MMU or FPU), so logic overhead is most significant

Where present, very small cache, so DRAM traffic (i.e. power) overhead is
pronounced

* CHERI Flute — Frequency and Prediction
Deeper pipeline, higher frequency (100Mhz), so sensitive to timing
Performance depends on predicting branches and forwarding results
* CHERI Toooba — Concurrency, Prediction, and Multicore
Superscalar execution and performance is sensitive to parallelism
Higher cost of misprediction and performance is very sensitive to accuracy

B UNIVERSITY OF
» CAMBRIDGE

55

7
International
NS

CHERI Flute — Challenge | — Frequency

Highest target frequency (100MHz). Initial
design failed timing.

Solution: careful optimization

* Make forwarding independent of bounds check

 Add latch between instruction cache and AXI
interconnect

* Expose cache invariants to synthesis tool
e Latch computed SCR value

e Refactor check for misprediction

* Delay capability trap infrequent path
(performance penalty only on trap)

* Rebalance floating point latching

Frequency (% of final)

100

75

50

25

B UNIVERSITY OF
&¥ CAMBRIDGE

CHERI Flute — Challenge 2 — Prediction

First core with prediction: fetch requests ——
are sent to the instruction memory before predictor
the capability used is known

Various possibilities, e.g. predict entire Addresses
capability, predict address or offset

. . . . ssmesseesesssssee Execute =
Solution: Divide core into front-end xectre
working with predicted raw addresses, and [Shecke

. . oo, ® redicted aadress
back-end working with full capabilities Capabilities [MNMRREN * -
— PCC.address

Also need to speculate "capability
encoding mode": add to predicted state Writeback

57

@8 UNIVERSITY OF
P CAMBRIDGE

-
CHERI Flute — Challenge 3 — DRAM traffic

* DRAM overhead was high initial
CHERI-Flute implementation (16.9%

overhead)

Write-through caches: capability writes
double DRAM traffic of integer writes.
Pushing to the stack twice as expensive
with purecap!

* Page table miss traffic was a large
contribution to DRAM traffic

The page table walks (uncached) directly
accessed DRAM

2-way associative TLB meets the
power/DRAM 5% target (-0.6% overhead)

Three Worst-case DRAM Traffic Overheads
B Initial @ 2-way TLB
60%

40%

20%

0%

telecomm-FFT telecomm-CRC32

automotive-basicmath

58 mlm UNIVERSITY OF

4P CAMBRIDGE

CHERI Toooba — Challenge | — Reorder Buffer

Reorder Buffer Contribution to Logic

Initial Reorder Buffer (state for 64 in-flight instructions) Overhead in CHERI-Toooba
184% overhead 30%
* Solution |: Change enum structure to avoid explosion 2
= 20%
Bluespec compiler was inefficient for sparse enum assignments; CHERI Toooba used §
these more than Toooba >
s 10%
* Solution 2: Eliminate three 64-bit registers from records ¢
Derivable from other state (TVAL) or unnecessary in our configuration (dest_data, 0%
store_data) B Initial [After Optimisation
* Solution 3: MUX out of Reorder Buffer rows into ALU Old Design Solution 3
| ob0 | — XN
-> i
64 MUXs (| per record) -> 2 MUXs (I per ALU pipe) =. m
Currently 2% overhead for Reorder buffer
e © — XN

BB UNIVERSITY OF
&¥ CAMBRIDGE

59

-
CHERI Toooba — Challenge 2 — PCC Metadata

Fetch | Insert

- —

Fetch 2

* Prediction/fetch/decode granularity
32 bits -> 16 bits for compressed instructions

Each granule has PCC and predicted next PCC:
256 bits of address metadata per |6-bit granule

spojgod

Fetch 3
* The distinct PC segments guaranteed to be 1/8 the =

maximum granules

Decode Lookup x 5

Fetch blocks of up to 4 granules share a segment
Any predicted PC will be shared with the next block

* Introduce compression table in 4 stages of Fetch typedef struct m
PcLSB lsb;
PC now represented by |5 bits PcIdx idx; ﬂ
} PcCompressed deriving(Bits,Eq,FShow);

30 bits per |6-bit granule

— 8 entries Table Instantiation
IndexedMultiset#(PcIdx, PcMSB, SupSizeX2) pcBlocks <- mkIndexedMultisetQueue;

function CapMem decompressPc(PcCompressed p) = {pcBlocks.lookup(p.idx),p.1lsb};

7
SRI 60

International
NS

S ALl
Ssl= ©

I8 UNIVERSITY OF
CAMBRIDGE

CHERI Toooba — Challenge 3 — BTB Contention

Original BTB

* CHERI pointers cause higher DRAM traffic

* Misprediction causes wasted traffic in Toooba

D ford lati Each PC alignment
eep, out-or-order speculation means can only be found in

unnecessary memory traffic caused one set; duplication
by misspeculated loads unnecessary.

* Use a 2-way associative Branch Target Buffer
(BTB) to compensate for DRAM overhead

13.07% -> 4.6% DRAM Overhead

* Segmented BTB to more-than-compensate
for the area overhead

8 UNIVERSITY OF
4P CAMBRIDGE

6l

L
Conclusions

* CHERI security extensions have been applied to a range of cores
* Microcontrollers to a superscalar core for CHERI-RISC-V

e Arm Morello SoC also demonstrates that CHERI can be added
to a commercial core (Neoverse NI)

e CHERI comes with some costs, but careful microarchitectural
optimization reduces these substantially

@8 UNIVERSITY OF
P CAMBRIDGE

62

-
The CHERI-RISC-V Software Ecosystem

and Toolchain

Alex Richardson, Jessica Clarke, David Chisnall, Brooks Davis, John Baldwin
Robert N. M.Watson, Simon W. Moore, Peter G. Neumann, Hesham Almatary, Alasdair Armstrong, Peter Blandford-Baker,
Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao,
Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie,A. Theo Markettos,
J. Edward Maste, Alfredo Mazzinghi, Prashanth Mundkur, Edward Napierala, George Neville-Neil, Robert Norton-Wright,
Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Michael Roe, Peter Rugg, Peter Sewell, Thomas Sewell,
Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, Jonathan Woodruff, and Hongyan Xia

University of Cambridge and SRI International

RISC-V Week

Paris, 3-5 May 2022

71N Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force IJNI\;E RSITY OF
=i Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
I author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. CA M BRI DG E

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI |-18-C-0016 (“ECATS”),and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

64

-
Compiling for CHERI RISC-V

* How can we make use of CHERI capabilities for C/C++ code!

« Use CHERI LLVM: https://github.com/CTSRD-CHERI/llvm-project

C

#Hinclude <stdio.h>

RISC-V Assembly CHERI RISC-V Assembly
-march=rvé4gc -mabi=Ipé64d -march=rv64gcxcheri -mabi=164pc|28d

d. SD. - | 6 cmcoffset csp, ¢sp, -1 6
mm_@—

auipcc ca0, %captab_pcrel hi(.Lstr)
clc ca0, %pcrel lo(.LBBO [)(ca0

myv al, zero mv a , Zero
- |ldra.8(sp)] clccra,U(csp)

_aaaisp.sp.l6 | ____ CINCOIISEL CSD. CSD. 1G

ret
.Lstr: .Lstr: -
B UNIVERSIT

Y OF

asciz "Hello world" .asciz "Hello world" &9 CAMBRI

DGE

https://github.com/CTSRD-CHERI/llvm-project

-

COMPILER

EXPLORER Add-~

More ¥

C source #1 X

A~

v (0]

e <stdio.h>

main(int argc, char **argv) {
printf("Hello world\n");

Purecap CHERI-RISCV64 (C, Editor #1, Compiler #2) £ X
Purecap CHERI-RISCV64 -02 -fpic

A~ B Y- 8 4+ /-
main:
csp, csp, -16
0(csp)

$captab_pcrel hi(.Lstr)
$pcrel_lo(.LBBO_1)(ca0)
puts
a0, zero
cra, 0(csp)

CSp,cSp,Ael6

"Hello world"

C B Output (/0) Purecap CHERI-RISCV64 { - cached (10452B) ~204 lines filtered

Lt

orer.cl.cam.ac.uk

Share ¥ Other >

RISCV64 (without CHERI) (C, Editor #1, Compiler #1) & X
RISCV64 (without CHERI) -02 -fpic

A~ - Y- 8 4+ /-
1 main:
o , -16
ra, 8(sp)

a0, %pcrel_hi(.Lstr)
a0, a0, %pcrel_ lo(.LBBO
puts@plt
a0, zero
ra, 8(sp)

> TRlG

"Hello world"

C B Output (//0) RISCV64 (without CHERI) § - cached (101848) ~200

lines filtered Ll

UNIVERSITY OF
CAMBRIDGE

https://cheri-compiler-explorer.cl.cam.ac.uk/

-
Automatic capability bounds (1)

* OS kernel, run-time linker, memory allocator(s) and compiler take
care of automatic capability bounds refinement

* On execve() initial (bounded) capabilities set up by OS kernel
* Run-time linker loads data & code for libraries using mmap()
* Kernel returns a new bounded capability for mmap()

* Run-time linker then processes relocations and creates bounded
capabilities for global variables and functions

« malloc() ensures that allocation is correctly bouded

B UNIVERSITY OF
P CAMBRIDGE

Automatic capability bounds (2)

The compiler automatically adds bounds e.g. for stack allocations:

{E E)?PAQF)II%EE Add...~ More~ Share ¥ Other v

C source #1 X Purecap CHERI-RISCV64 (C, Editor #1, Compiler #2) # X RISCV64 (without CHERI) (C, Editor #1, Compiler #1) & X
A~ B +~- v C Purecap CHERI RIS
#include <stdio.h> A ©- Y~ A~

‘) 1 main: il
void write to buffer(void* buffer);
- = CA:N csp, csp, -32 , r

csc cra. l6(csp) sd ra, 8(sp)
int main(int argc, char #**argv) {

cincoffset cal, csp, 14 addi ao, ; 6
char stack buffer[2];

csetbounds cal0. cal0. 2 5 call write to buffer@plt
. cecailnl write_ to_buffer > mv a0, zero
write to buffer(stack buffer); - =

- = = mv a0, zero 1d ra, 8(sp)
clic cra, 1l6(csp) 8 " 5 AUE
cincoffset CSPyYRCSP,ES2

cret
C' EOutput (0/0) Purecap CHERI-RISCV64 § - 169ms C' EOutput (0/0) RISCV64 (without CHERI) § -
(16867B) ~321 lines filtered sl 214ms (16409B) ~314 lines filtered |l

77N —
SRI BB UNIVERSITY OF
NSEwe P CAMBRIDGE

NN WA
N)

Automatic capability bounds (3)

Opt-in support for preventing sub-object overflows (at a moderate compatibility cost).

{E E)?I%CP)IEEE Add...~ More~ Share ¥ Other v

= v Purecan CHERI-RISCV64 (C_Fditor #1_Compiler #2) £ X

) I—cheri—bounds:subobject—safeI-02

[Libraries <4 Add new...~ ,” Add tool...~

il update_name:

2 csetbounds cal0, ca0, 16
struct S {

char name[16];

ctail set name from uid

b Ll L C HEOutput (0/0) Purecap CHERI-RISCV64 § - 167ms (22172B) ~411 lines filtered Ll
void (*fn_ptr)(int);

}; ‘ : - - Bpiler #1) £ X
_Qz

& Libraries 4 Add new...~ 4 Add tool... ~

void set_name_from uid(char* dst, uid_t u);

void update name(struct S *s, uid_t u) { update pamnad

ctail set name from uid I
set_name_from_ uid(s->name, u);

C HE Output (0/0) Purecap CHERI-RISCV64 § - 202ms (21023B) ~387 lines filtered Ll

7R -)
=] UNIVERSITY OF
" CAMBRIDGE

NN WA
NN 4

Memory protection for the language and the language runtime

* Capabilities are refined by the kernel, run-time linker,
Language-level memory safety compiler-generated code, heap allocator, ...

Pointers to heap POInter§ to * Protection mechanisms:
global variables

allocations Function * Referential memory safety
pointers Pointers to Soatial oty + privil o
: - . rivi minimization
Pointers to stack memaory mappings patial memory salety = privilege atlo
allocations pginters to TLS Pointers to sub. * Temporal memory safety
variables : : .
objects « Applied automatically at two levels:
— T~ T~ * Language-level pointers point explicitly at stack
GOT Varargarray o1 o1 try and heap allocations, global variables, ...
: ointers . . ,
Return ~ pointers P pointers * Sub-language pointers used to implement
control flow, linkage, etc.
addresses C++ veable ELF aux ar 8
Stack i & : . :
. pointers pointers * Sub-language protection mitigates bugs in the language
pointers runtime and generated code, as well as attacks that
Sub-language memory safety cannot be mitigated by higher-level memory safety

58 UNIVERSITY OF
CAMBRIDGE

70

-
Portability when compiling for CHERI-RISC-V

* In general, most code will just work as-is or be flagged by compiler warnings
* However, a few common issues exist:
* Insufficient alignment (e.g. in memory allocators)
* Loading/storing pointers needs stricter alignment (16 bytes for CHERI-128)
* Allocators should use alignof(max_align_t) instead of hardcoding 8
* Incorrectly casting pointers to or from long
 long can only hold the address part, bounds and validity are lost when casting
* Please use C99 uintptr_t instead (using long is not allowed by C standard)

* Updating pointers after realloc() may require auditing

* More details: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

@8 UNIVERSITY OF
P CAMBRIDGE

71

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

-
Operating system support

192.168.8.3 (jrtc27@morelio) - VNC Viewer

* Most mature OS is CheriBSD,
FreeBSD with full support for pure-
capability CHERI code

* https://github.com/CTSRD-
CHERI/cheribsd

* Even runs a memory safe KDE
graphical desktop!

* 0.026% LoC modification
rate across full corpus for
memory safety

* 73.8% mitigation rate across
full corpus, using memory safety
and compartmentalization

B H UNIVERSITY OF
P CAMBRIDGE

https://github.com/CTSRD-CHERI/cheribsd

-
Debugging

* We have a version GDB with support for CHERI-RISC-V available
at https://github.com/CTSRD-CHERI/gdb

* Generally works just as you are used to it

Starting program: /opt/cheri-exercises/buffer-overflow-stack-cheri

Program received signal SIGPROT, CHERI protection violation

Capability bounds fault caused by register cal.

0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,@x3fffdfff5c-0x3fffdfffoc] "", ix=16)
at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13

13 src/exercises/buffer-overflow-stack/buffer-overflow-stack.c: No such file or
directory.

(gdb) bt

#0 0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,0x3fffdfff5c-0x3fffdfffec] "",
1x=16) at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13

#1 0x0000000000101e98 in main () at src/exercises/buffer-overflow-stack/buffer-overflow-
stack.c:31

(gdb)

AR
SRi

International
N

H UNIVERSITY OF
CAMBRIDGE

https://github.com/CTSRD-CHERI/gdb

AR
SRi

International
N

Debugging

* We have a version GDB with support for CHERI-RISC-V available
at https://github.com/CTSRD-CHERI/gdb

* Generally works just as you are used to it

Starting program: /opt/cheri-exercise

Program received signal SIGPROT, CHERITPTOCECCLOM ¥

Capability bounds fault caused by register cal.

0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW, 1"", ix=16)
at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13

13 src/exercises/buffer-overflow-stack/buffer-overflow-stack.c: No such file or
directory.

(gdb) bt

#0 0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW, 1"",
1x=16) at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13

#1 0x0000000000101e98 in main () at src/exercises/buffer-overflow-stack/buffer-overflow-
stack.c:31

(gdb)

H UNIVERSITY OF
CAMBRIDGE

https://github.com/CTSRD-CHERI/gdb

L
Emulators

* QEMU: https://github.com/CTSRD-CHERI/gemu

* Fast and mature emulator including instruction tracing and GDB
support for bare-metal debugging

* Easiest way to get started with CHERI — no need for an FPGA
* Sail model: https://github.com/CTSRD-CHERI/sail-cheri-riscv
* Reference model for 32 and 64-bit CHERI-RISC-V

5 UNIVERSITY OF
4P CAMBRIDGE

75

https://github.com/CTSRD-CHERI/qemu
https://github.com/CTSRD-CHERI/sail-cheri-riscv

-
Tying it all together - cheribuild

* Yet another meta build system for CHERI software
* Builds all the projects needed to run CheriBSD (and much more)
* To get started: cheribuild.py run-riscve4-purecap -d

* Can also cross-compile hundreds of additional projects that aren’t
packaged yet for CheriBSD, e.g. kde-x11-desktop

* Automates various steps such as build and installation, booting
CheriBSD and running (cross-compiled) test suites

* Available at htts://github.com/CTSRD-CHERI/cheribuild

B UNIVERSITY OF
» CAMBRIDGE

76

https://github.com/CTSRD-CHERI/cheribuild

L
Conclusions

* CHERI RISC-V has a mature software ecosystem including OS
support (CheriBSD), emulators (QEMU) and debuggers (GDB)

* All of these projects are open-source and available on GitHub:
https://github.com/CTSRD-CHERI/

* Key takeaways from this talk:

* Using CHERI-RISC-V should feel essentially the same as RISC-V

* Even if you don’t plan on using CHERI for your code: please use
(wWintptr_t when casting pointers to integers

@8 UNIVERSITY OF
P CAMBRIDGE

77

https://github.com/CTSRD-CHERI/

e
CHERI-RISC-V demo

Demonstrating Memory-safety Features under CheriBSD on a Multi-core, Superscalar Softcore

Franz Fuchs, Robert N. M.Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou,
Mark Johnston, Robert Kovacsics, Ben Laurie, A. Theo Markettos, J. Edward Maste, Alfredo Mazzinghi,

Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright,
Philip Paeps, Lucian Paul-Trifu, Allison Randal, lvan Ribeiro,Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg,
Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera,

Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week

Paris, 3-5 May 2022

7% Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force lJNI\;E RSITY OF
=i Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
' author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. CA M BRI DG E

7
International
A WA

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-1 1-C-0249
(“MRC2”), HROOI |-18-C-0016 (“ECATS”),and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs.The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

I8 UNIVERSITY OF
CAMBRIDGE

79

This presentation is based on material prepared by the CHERI project:

Adversarial CHERI Exercises and Missions:

https://ctsrd-cheri.github.io/cheri-exercises/

CHERI Workshops:

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/workshops/

B UNIVERSITY OF
&¥ CAMBRIDGE

80

https://ctsrd-cheri.github.io/cheri-exercises/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/workshops/

Cross-compiling CHERI Binaries

clang —-target riscv64-unknown-freebsd —--sysroot=/path/to/sysroot-

riscvod4—purecap/ —-mno-relax —-march=rv64gc —-mabi=1p64d source.c -o
binary

clang —-target riscv64-unknown-freebsd —--sysroot=/path/to/sysroot-

riscve4—-purecap/ —-mno-relax —-march=rv64gcxcheri —mabi=1p64pcl28d
-Wcheri source.c -0 binary t

8l

mnm UNIVERSITY OF
4P CAMBRIDGE

e
CHERI Pointers and Addresses

Interacting with CheriBSD. Use CTRL+] to exit
/dev/ttyUSB2 115200,8,N,1 ———
——— Quit: Ctrl+] | Menu: Ctrl+T | Help: Ctrl+T followed by Ctrl+H —-

Settings: /dev/ttyUSB2 115200,8,N,1
RTS: active DTR: active BREAK:

software flow control: inactive
hardware flow control: inactive
serial input encoding: UTF-8
serial output encoding: UTF-8
EGIE=INE

filters: default

[PEXPECT\PROMPT]>sysctl hw.machine hy
hw.machine: riscv

hw.ncpu: 2
[PEXPECT\PROMPT]>./print-pointer-baseline
size of pointer: 8

size of address: 8
[PEXPECT\PROMPT]>./print-pointer—-cheri
size of pointer: 16

size of address: 8

[PEXPECT\PROMPT1>]]

7N

SR

International

N

S L7
SN

inactive

CTS: inactive DSR: inactive RI: inactive CD: inactive

int main(void){
printf("size of pointer: %zu\n", sizeof(void *));

printf("size of address: %zu\n", sizeof(ptraddr_t));
return (0);

}

Dual-core processor running on FPGA

Legacy: pointer size = address size

CHERI: pointer size = address size + 8
bytes of CHERI metadata

T UNIVERSITY OF
CAMBRIDGE

-
CHERI tag protection (1/2)

char buf[Ox1FF];

volatile union { char x*ptr; Declare a character buffer and a
char bytes[sizeof(charx)]; union struct
Ips
for (size_t i = 0; 1 < sizeof(buf); i++) { Fill the buffer with sequence of
buf[i] = 9; values
}

Assign p.ptr t tof b
p.ptr = &buf[0x10F]; ssign p.ptr to part of buf

char *q = (char*)(((uintptr_t)p.ptr) & ~0xFF); . , ,
orintf("q=%" PRINTF_PTR " (0x%zx into buf)\n", q, q - buf); [aeahuiaieiic it Clle il
printf("+q=%02x\n", *q); buf, and print status

p.bytes[0] = 0;

char *r = p.ptr; Attempt to assign r to an aligned
printf("r=%" PRINTF_PTR " (0x%zx)\n", r, r - buf); address in buf via the p.bytes field

printf("xr=%02x\n", *r); and print status

83 mlm UNIVERSITY OF

P CAMBRIDGE

-
CHERI tag protection

[PEXPECT\PROMPT]>./corrupt-pointer-baseline

buf=0x80d352b9 &p=0x80d352b0 Writing to pointer and writing to a data
p.ptr=0x80d353c8 (@0x10f into buf) *p.ptr=0f . .
q=0x80d35300 (0x47 into buf) array are both valid on the baseline
*xq=47

r=0x80d35300 (0x47)

xr=47

[PEXPECT\PROMPT]>./corrupt-pointer-cheri Write to capability with a capability
buf=0x3fffdffd71 [rwRW,0x3fffdffd71-0x3fffdfff70] &p=0x3fffdffde@ [rwRW,0@x3fffdf .

fd60-0x3fffdffd70] operation works fine
p.ptr=0x3fffdffe80 [rwRW,@x3fffdffd71-0x3fffdfff70] (0x10f into buf . ptr=0f

q=0x3fffdffe0@ [rwRW,ox3fffdffd71-ex3fffdfff70] (@x8f into buf)

*q=8f

r=0x3fffdffe@0@ [rwRW,0x3fffdffd71-0x3fffdfff70] (invalid) (@x8f)

In-address space security exception D Fi Hi lidi
[PEXPECT\PROMPT]>]] ata write strips validity tag

Dereferencing an invalid capability leads
to an exception

UNIVERSITY OF
W CAMBRIDGE

R
Buffer Overflow (1/3)

Declare two buffers at consecutive
addresses

char upper[0x10];
char lower[0x107;

printf("upper = %p, lower = %p, diff = %zx\n", Print memory layout of buffers
upper, lower, (size_t) (upper - lower));

upper[0] = 'a'; Write to buffer upper and print

printf("upper[0] = %c\n", upper[0]); status

lower [sizeof(lower)] = 'b’; Out-of-bounds write to lower and
printf("upper[0] = %c\n", upper[0]); print status of upper to see
whether buffer overflow worked

UNIVERSITY OF
P CAMBRIDGE

85

-
Buffer Overflow (2/3)

[PEXPECT\PROMPT]>. /buffer-overflow-stack-baseline
upper = 0x80c7b6c@d, lower = 0x80c7b6b0, diff = 10 ..
Buffer overflow successful due to missing

upper[@] = a
upper([@] = b bounds information on baseline

[PEXPECT\PROMPT]>./buffer-overflow-stack-cheri
upper = Ox3fffdfff50, lower = Ox3fffdfff4e0, diff = 10

upper[0] = a
In-address space security exception upper and lower are guarded by
[PEXPECT\PROMPT]>}] R

capabilities limiting each buffer to 16

byte bounds

Out-of-bounds write leads to CHERI
exception

T UNIVERSITY OF
CAMBRIDGE

77NN

SR

International

R
Buffer Overflow (3/3)

<setup_cap>:

cincoffset ca@, csp, 48 Create capability for buffer lower
csetbounds cs0, ca0d, 16 and set 16 byte bounds

Create capability for buffer upper at
cincoffset ca@, csp, 64 consecutive addresses and set 16

csetbounds csl, ca@, 16 byte boundaries

<write_to_lower>: .
addi al, zero, 16 Move capability address out of

cincoffset cs@, cs0, al bounds because al = 16

addi al, zero, 98 Store character ‘b’ in al

Store byte to memory; CHERI
exception due to address out-of-

csb al, 0(cs0)

bounds
87

1 UNIVERSITY OF
4P CAMBRIDGE

-
CHERI C/C++: pointer provenance validity (1/2)

* An integer data type cast to a pointer data type results in a NULL-derived capability
without a tag;

* However, there are data types that can hold pointer or integer values (e.g., uintptr_t).

* In the CHERI memory protection model, capabilities are derived from a single other
capability;

* In CHERI C/C++,a capability can be a result of a complex expression with multiple
data types and casts.

,and 4.2.3

CHERI C/C++ Programming Guide, Section 4.2,4.2.1
L-TR-947.pdf)

(https://www.cl.cam.ac.uk/techreports/UCAM-C

@8 UNIVERSITY OF
P CAMBRIDGE

88

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

-
CHERI C/C++: pointer provenance validity (2/2)

* ldeally, we would like to recompile source code for CheriABI and
automatically gain security;

* Unfortunately, there is a lot of software that use incorrect data
types to hold values that fit in them but have different semantics.

@8 UNIVERSITY OF
P CAMBRIDGE

89

-
CHERI LLVM: CHERI compiler warnings and errors

CHERI LLVM can identify capability-related issues and print warnings:

* Loss of provenance (-VVcheri-capability-misuse);

* Ambiguous provenance (-VVcheri-provenance);

* Underaligned capabilities of packed structures (-Wcheri-capability-misuse);

* Underaligned load of capability type (-Wcheri-inefficient).

CHERI C/C++ Programming Guide, Chapter 6
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf)

@8 UNIVERSITY OF
P CAMBRIDGE

90

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

-
Example broken cat program

We modified the cat(1) program from CheriBSD/FreeBSD to introduce
two bugs:

|. Loss of provenance.

2. Provenance-free integer type to pointer type cast.

@8 UNIVERSITY OF
P CAMBRIDGE

91

-
CHERI LLVM: CHERI compiler warnings and errors

faf28@choisi:/local/scratch/faf28/demo/cheri-exercises/src/exercises/adapt-c$ cl Let’S tr)’ to Compl|e Cat!

ang —-g -02 -target riscv64-unknown-freebsd —--sysroot=/local/scratch/faf28/cheri/

output/sdk/sysroot-riscv64-purecap/ —-fuse-ld=11d -mno-relax -march=rv64gcxcheri

-mabi=164pc128d -Wall -Wcheri cat/methods.c cat/cat.c -o cat-cheri

cat/methods.c:70:43: warning: binary expression on capability types 'ptroff_t' (Potential loss of provenance: we have
aka 'ur)signed __intcap') and 'uintptr_t' (aka 'unsigned __intcap'); it is Rt given the compiler multiple choices for a
ear which should be used as the source of provenance; currentl sg¥ENance is in

herited from the left-hand side [-Wcheri-provenance] source of provenance and the compiler

return (write(fildes, (const void x)(off + (uintptr_t)buf), nbyte)); might have picked the wrong one

oo N ENINGNIVOGENGONGONGONGOGOGNG NN

cat/methods.c:80:7: warning: cast from provenance-free integer type to pointer t
ype will give pointer that can not be dereferenced [-Wcheri-capability-misuse]
fp = (FILE x)file;

2 warnings generated.

faf28@choisi:/local/scratch/faf28/demo/cheri-exercises/src/exercises/adapt-c$ ex

S " We are trying to case a hon-pointer type
exi . .

i to a pointer type; we need a valid

capability as a source of provenance

UNIVERSITY OF
W CAMBRIDGE

L
Conclusions

* CHERI HW/SW stack is fully working
* CHERI enforces intentionality

* Provenance validity and bounds checking lead to strong spatial
memory safety that eliminates security bugs

 CHERI LLVM helps a developer to adapt a C/C++ program to
CHERI C/C++

* Source code changes are needed where source of provenance is
not clear, where non-pointer to pointer casting is done, and where
alignments enforced by the developer are incorrect

B UNIVERSITY OF
» CAMBRIDGE

93

WRAP UP

BB UNIVERSITY OF
&¥ CAMBRIDGE

94

-
Wrap Up

* CHERI is a stable platform:
* Demonstrated on RISC-V and Arm (previously on MIPS)
* Full software stack (compiler, linker, OSs, etc.)
* Formal verification of key security properties
* Our aim:
* CHERI on every platform with no IP restrictions

* Looking to ratify CHERI as an official RISC-V extension

Project website: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

@8 UNIVERSITY OF
P CAMBRIDGE

95

