
Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Introducing CHERI-RISC-V
Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel,
Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood,

Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston,
Robert Kovacsics, Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar,

Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright, Philip Paeps,
Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg, Hassen Saidi,

Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk,
Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week
Paris, 3-5 May 2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

2

Introduction: What is CHERI?
• CHERI=Capability Hardware Enhanced RISC Instructions

• CHERI is a new hardware technology that mitigates software
security vulnerabilities

• Developed by the University of Cambridge and SRI International
starting in 2010, supported by DARPA and others

• Arm collaboration from 2014

• CHERI for RISC-V is now mature, but being refined

• Today’s talk:

• Why develop CHERI?

• What is CHERI and how does it work?

• What software will I be able to run on it?

• What sort of evaluations have been run to date?
3

An early experimental FPGA-
based CHERI tablet prototype
running the CheriBSD
operating system and
applications, Cambridge, 2013

Why develop CHERI?
“Buffer overflows have not objectively gone down in the last 40 years.

The impact of buffer overflows have if anything gone up.”

Ian Levy, NCSC

• Matt Miller (MS Response Center) @ BlueHat 2019:

• From 2006 to 2018, year after year, 70% MSFT CVEs are memory safety bugs.

• First place: spatial safety

• Addressed directly by CHERI

• Second place: use after free

• Our recent work exploiting CHERI capability validity tags to precisely find
pointers

More Motivation – Chromium Browser Safety

5

“70% of our serious security bugs are memory safety problems”
www.chromium.org/Home/chromium-security/memory-safety

6

source: http://xkcd.com
/1354/

Example 1

7

source: http://xkcd.com
/1354/

8

source: http://xkcd.com
/1354/

Went wrong? How do we do better?

• Classical answer:

• The programmer forgot to check the bounds of the data structure
being read

• Fix the vulnerability in hindsight – one-line fix:
if (1+2+payload+16 > s->s3->rrec.length) return 0;

• Our answer:

• Preserve bounds information during compilation

• Use hardware (CHERI processor) to dynamically check bounds
with little overhead and guarantee pointer integrity & provenance

9

Example 2: how to reduce the attack surface?

• The software attack surface keeps getting bigger

• Applications just keep getting larger

• Huge libraries of code aid rapid program development

• Everything is network connected

• This aids the attacker: an expanding number of ways to break in

10

Software compartmentalization decomposes software into
isolated compartments that are delegated limited rights

Able to mitigate not only unknown vulnerabilities, but also
as-yet undiscovered classes of vulnerabilities and exploits

CHERI solution: application-level least privilege

Principles CHERI helps to uphold

• The principle of intentional use

• Ensure that software runs the way the programmer intended,
not the way the attacker tricked it

• Approach: guaranteed pointer integrity & provenance, with
efficient dynamic bounds checking

• The principle of least privilege

• Reduce the attack surface using software compartmentalization

• Mitigates known and unknown exploits

• Approach: highly scalable and efficient compartmentalization
12

CHERI hardware adds a new type – the Capability

• CHERI Capability = bounds checked pointer with integrity

• Held in memory and in (new or extended) registers

13

address

permissions compressed bounds (top, bottom) s

64-bits

v

hidden validity/integrity tag

128-bits

A new type – the Capability

14

address

permissions compressed bounds (top, bottom) sv

virtual memory

Processor primitives for software security

Microarchitecture

Compilers and toolchain

Systems software

Applications

Instruction-Set Architecture
(ISA)

CHERI capabilities are an architectural primitive that
compilers, systems software, and applications use to constrain

their own future execution

Software configures and uses capabilities to continuously
enforce safety properties such as referential, spatial, and
temporal memory safety, as well as higher-level security

constructs such as compartment isolation

The microarchitecture implements the capability data type
and tagged memory, enforcing invariants on their
manipulation and use such as capability bounds,

monotonicity, and provenance validity
15

Two key applications of the CHERI primitives
1. Efficient, fine-grained memory protection for C/C++

• Strong source-level compatibility, but requires recompilation

• Deterministic and secret-free referential, spatial, and temporal memory safety

• Retrospective studies estimate ⅔ of memory-safety vulnerabilities mitigated

• Generally modest overhead (0%-5%, some pointer-dense workloads higher)

2. Scalable software compartmentalization

• Multiple software operational models from objects to processes

• Increases exploit chain length: Attackers must find and exploit more vulnerabilities

• Orders-of-magnitude performance improvement over MMU-based techniques
(<90% reduction in IPC overhead in early FPGA-based benchmarks)

16

CHERI prototype software stack
• Complete open-source software stack from bare metal up: compilers, toolchain,

debuggers, hypervisor, OS, applications – all demonstrating CHERI
• Rich CHERI feature use, but fundamentally incremental/hybridized deployment
• Aim: Mature and highly useful research and development platform for Morello

CHERI-extended Google Hafnium hypervisor

CHERI Clang/LLVM compiler suite, LLD, LLDB, GDB

CheriBSD/Morello (funded by DARPA and UKRI)
• FreeBSD kernel + userspace, application stack
• Kernel spatial and referential memory protection
• Userspace spatial, referential, and temporal memory protection
• Co-process compartmentalization
• Intra-process compartmentalization
• Morello-enabled bhyve Type-2 hypervisor
• ARMv8-A 64-bit binary compatibility for legacy binaries

Open-source application suite (KDE, X11, WebKit, Python, OpenSSH, nginx, PostgresQL …)

Android (Arm)
(Morello only)

Linux (Arm)
(Morello only)

Baseline CHERI
Clang/LLVM from
SRI/Cambridge;

Morello
adaptation by
Arm + Linaro

17

Microsoft security analysis of CHERI C/C++
• Microsoft Security Research Center (MSRC) study analyzed all

2019 Microsoft critical memory-safety security vulnerabilities

• Metric: “Poses a risk to customers → requires a software
update”

• Vulnerability mitigated if no security update required

• Blog post and 42-page report

• Concrete vulnerability analysis for spatial safety

• Abstract analysis of the impact of temporal safety

• Red teaming of specific artifacts to gain experience

• CHERI, “in its current state, and combined with other mitigations,
it would have deterministically mitigated at least two
thirds of all those issues”

1 | P a g e

Microsoft Security Response Center (MSRC)

SECURITY ANALYSIS OF CHERI ISA
Nicolas Joly, Saif ElSherei, Saar Amar ʹ Microsoft Security Response Center (MSRC)

INTRODUCTION AND SCOPE

The CHERI ISA extension provides memory-protection features which allow historically memory-unsafe programming languages such

as C and C++ to be adapted to provide strong, compatible, and efficient protection against many currently widely exploited

vulnerabilities.

CHERI requires addressing memory through unforgeable, bounded references called capabilities. These capabilities are 128-bit

extensions of traditional 64-bit pointers which embed protection metadata for how the pointer can be dereferenced. A separate tag

table is maintained to distinguish each capability word of physical memory from non-capability data to enforce unforgeability.

In this document, we evaluate attacks against the pure-capability mode of CHERI since non-capability code in CHERI͛Ɛ�ŚǇďƌŝĚ�ŵŽĚĞ

could be attacked as-is today. The CHERI system assessed for this research is the CheriBSD operating system running under QEMU as

it is the largest CHERI adapted software available today.

CHERI also provides hardware features for application compartmentalization [15]. In this document, we will review only the memory

safety guarantees, and show concrete examples of exploitation primitives and techniques for various classes of vulnerabilities.

SUMMARY

�,�Z/͛Ɛ�/^��ŝƐ�ŶŽƚ�ǇĞƚ�ƐƚĂďŝůŝǌĞĚ͘�tĞ�ƌĞǀŝĞǁĞĚ�ƚŚĞ�ĐƵƌƌĞŶƚ�ƌĞǀŝƐŝŽŶ�ϳ͕�ďƵƚ�ƐŽŵĞ�ŽĨ�ƚŚĞ�ƉƌŽƚĞĐƚŝŽŶƐ�ƐƵĐŚ�ĂƐ�ĞǆĞĐƵƚĂďůĞ�ƉŽŝŶƚĞƌ sealing

is still experimental and likely subject to future change.

The CHERI protections applied to a codebase are also highly dependent on compiler configuration, with stricter configurations

requiring more refactoring and qualification testing (highly security-critical code can opt into more guarantees), with the strict sub-

allocation bounds behavior being the most likely high friction to enable. Examples of the protections that can be configured include:

x Pure-capability vs hybrid mode

x Chosen heap allocatŽƌ͛Ɛ�ƌĞƐŝůŝĞŶĐĞ

x Sub-allocation bounds compilation flag

x Linkage model (PC-relative, PLT, and per-function .captable)

x Extensions for additional protections on execute capabilities

x Extensions for temporal safety

However, even with enabling all the strictest protections, it is possible that the cost of making existing code CHERI compatible will be

less than the cost of rewriting the code in a memory safe language, though this remains to be demonstrated.

We conservatively assessed the percentage of vulnerabilities reported to the Microsoft Security Response Center (MSRC) in 2019

and found that approximately 31% would no longer pose a risk to customers and therefore would not require addressing through a

security update on a CHERI system based on the default configuration of the CheriBSD operating system. If we also assume that

automatic initialization of stack variables (InitAll) and of heap allocations (e.g. pool zeroing) is present, the total number of

vulnerabilities deterministically mitigated exceeds 43%. With additional features such as Cornucopia that help prevent temporal

safety issues such as use after free, and assuming that it would cover 80% of all the UAFs, the number of deterministically mitigated

vulnerabilities would be at least 67%. There is additional work that needs to be done to protect the stack and add fined grained CFI,

but this combination means CHERI looks very promising in its early stages.

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/
18

https://msrc-blog.microsoft.com/2020/10/14/security-analysis-of-cheri-isa/

CHERI desktop ecosystem study: Key outcomes

Developed:

• 6 million lines of C/C++ code
compiled for memory safety; modest
dynamic testing

• Three compartmentalization
case studies in Qt/KDE

Evaluation results:

• 0.026% LoC modification rate
across full corpus for memory safety

• 73.8% mitigation rate across full
corpus, using memory safety and
compartmentalization

19
http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

http://www.capabilitieslimited.co.uk/pdfs/20210917-capltd-cheri-desktop-report-version1-FINAL.pdf

Where to learn more?
• Project web pages:

• http://www.cheri-cpu.org/

• An Introduction to CHERI, Technical
Report UCAM-CL-TR-941, Computer
Laboratory, September 2019

• Capability Hardware Enhanced RISC
Instructions: CHERI Instruction-Set
Architecture (Version 8), UCAM-CL-TR-
951, October 2020

• CHERI C/C++ Programming Guide,
UCAM-CL-TR-947, June 2020

20

An Introduction to CHERI

• Architectural capabilities and the
CHERI ISA

• CHERI microarchitecture
• ISA formal modeling and proof
• Software construction with

CHERI
• Language and compiler

extensions
• OS extensions
• Application-level adaptations

http://www.cheri-cpu.org/

CHERI research and development timeline

Years 1-2: Research platform, prototype architecture

Years 2-4: Hybrid C/OS model, compartment model

Years 4-7: Efficiency, CheriABI/C/C++/linker, ARMv8-A

Years 8-9: RISC-V, temporal safety, formal proof
21

Over 150 researcher years of
effort by Cambridge & SRI

Many engineer years by Arm

Bridging the commercialisation chasm

22

T
R

L1
: B

as
ic

 p
ri

nc
ip

le
s

T
R

L2
: T

ec
hn

ol
og

y
co

nc
ep

t

T
R

L3
: P

ro
of

 o
f c

on
ce

pt

T
R

L4
: S

im
ul

at
io

ns
 &

in

iti
al

 r
es

ul
ts

Research in the Lab

Fundamental
Principles

Proven
Technology

T
R

L5
: V

al
id

at
io

n
on

 F
PG

A
w

ith
 m

od
es

t
to

ol
ch

ai
n

T
R

L6
: F

ul
l O

S,
to

ol
ch

ai
n,

se
ve

ra
l p

ro
ce

ss
or

s
on

 F
PG

A

Simulation/

prototyping

T
R

L7
: P

ro
to

ty
pe

de
m

on
st

ra
tio

n
in

 r
ea

l w
or

ld

T
R

L8
: P

ro
du

ct
 c

om
pl

et
ed

an
d

qu
al

ifi
ed

 in
 r

ea
l w

or
ld

T
R

L9
:

Pr
od

uc
t

pr
ov

en
in

 r
ea

l w
or

ld

Real W
orld

University Industry

C
H

ER
I-R

IS
C

-V
&

 A
rm

 M
or

el
lo

First we made an FPGA-based hardware tablet

23

Open Source Stack: Research and Deployment

• CHERI-RISC-V developed open source:

• Documentation (ISA ref, architecture overview, etc)

• Specification in Sail

• Simulators: Spike, Qemu

• Clang/LLVM toolchain

• OS support: CheriBSD, CheriFreeRTOS, CheriRTEMS

• Hardware implementations

• 3-stage, 5-stage and OoO cores on FPGA including AWS F1

24

Project URL:
http://cheri-cpu.org/

links to:
https://www.cl.cam.ac.uk/ research/security/ctsrd/

Open Source CHERI-RISC-V Cores

• Piccolo 32b microcontroller:
https://github.com/CTSRD-CHERI/Piccolo

• Flute 64b/32b scalar core:
https://github.com/CTSRD-CHERI/Flute

• Toooba 64b out-of-order core based on MIT Riscy-OOO core:
https://github.com/CTSRD-CHERI/Toooba

25

https://github.com/CTSRD-CHERI/Piccolo
https://github.com/CTSRD-CHERI/Flute
https://github.com/CTSRD-CHERI/Toooba

Arm Morello Demonstrator Board

Conclusions
• CHERI protections are completely deterministic and solve fundamental

security issues

• CHERI provides the hardware with more semantic knowledge of what the
programmer intended

• Toward the principle of intentionality

• Efficient pointer integrity and bounds checking

• Eliminates buffer overflow/over-read attacks (finally!)

• Provide scalable, efficient compartmentalisation

• Allows the principle of least privilege to be exploited to
mitigate known and unknown attacks

• Transitioning the technology via CHERI-RISC-V and Arm Morello
27

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

The CHERI-RISC-V Extension

Jessica Clarke, Peter Rugg, David Chisnall, Jonathan Woodruff, Alexandre Joannou
Robert N. M. Watson, Simon W. Moore, Peter G. Neumann, Hesham Almatary, Alasdair Armstrong, Peter Blandford-Baker,
John Baldwin, Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Brooks Davis, Lawrence Esswood, Nathaniel W. Filardo,

Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Mark Johnston, Robert Kovacsics, Ben Laurie,
A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Prashanth Mundkur, Edward Napierala, George Neville-Neil,
Robert Norton-Wright, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Peter Sewell,
Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, and Hongyan Xia

University of Cambridge and SRI International

RISC-V Week
Paris, 3-5 May 2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

29

CHERI Overview
• CHERI capability words are hardware-defined pointer structures that include

bounds and permissions.

• Capabilities are preserved atomically in both registers and memory

• Capabilities can be dereferenced to load/store data
(and other capabilities)

• All capabilities must be derived
from more permissive capabilities

30

address

permissions compressed bounds (top, bottom) sv

virtual memory

Tags distinguish capabilities and
data in registers and memory

Basic Requirements

• Load and store capabilities (2 * XLEN + tag)

• Load and store through capability pointers

• Jump to capabilities

• Manipulate capability metadata in registers (bounds, permissions)

31

Change PC with its bounds
and permissions (ie PCC)

What are my bounds
and permissions?

Must move capabilities
atomically

• Derive narrower capabilities
• Read capability fields
• Pointer arithmetic

CHERI-RISC-V Load and Store Capabilities

• Used reserved LQ/SQ for 128-bit capabilities

• Is this rv128? Not quite; will discuss later...

32

Moves 2×XLEN,
regardless of tag value;

used for memcpy

Capability words must
be aligned (unlike data)
due to tag constraints

Load and Store through Capability Pointers
• New memory instruction encodings are expensive due to large immediates

• Use a mode bit for standard loads and stores to expect a capability address operand

• Common cases: all integer pointers OR all capability pointers (depending on ABI)

• Sacrifices intentionality in machine code

• Mode bit is in PCC, so is naturally restored on function return

• Integer pointers use Default Data Capability (DDC) bounds
Capability pointers use their own bounds

• Also add loads and stores explicit to each kind of pointer (with no immediate)

33

Uncompressed instructions affected by capability mode Compressed instructions affected by capability mode

Could we decide
dynamically based on tag?
Intentionality says no!

Split or Merged Register File

• New register file vs.
Unified (& extended) register file

• C0 holds the NULL capability

• CHERI-RISC-V supports split or merged
• Instructions are identical

• Only semantics are changed
34

Integer register file Capability register file

$ra

$a1

$a0

v$c4

v

-

$c31

$c3

Merged register file

$ra

$a1

$a0

$c31 v

$c4 v

$c3 v

• So-far only implemented merged
• Better scientific comparability with the

baseline

• Less context to save and restore

OR

Split register file

CHERI-MIPS used a
split register file

Losing the chance to add more
registers at almost no encoding cost!

Jump to Capabilities

• Use explicit new jump to expect capability pointers

• Why not reuse the old jumps, repurposed with the mode bit?
Because the mode bit is flipped by jumping to a capability!

• Helps intentionality, and encoding is cheap (just two operands)

• Compressed jumps do use the mode bit

35

Can't jump into capability mode with
a compressed jump; only out.

Capabilities can point to code,
not just data!

Capability Manipulation Instructions
• Legacy integer instructions produce upper

bits of the NULL capability (tag cleared)

• Pointer arithmetic uses dedicated instructions (IncOffset)
rather than reusing legacy ones (ADD)

• Makes pointer arithmetic intentional

• Could help micro-architectural optimisation
(IncOffset must check representability)

• Throw exception vs. clear tag on illegal transformations

• Throwing an exception gives precise debugging

• Clearing the tag is more convenient for software and
micro-architecture, and is also safer

• We're moving from exceptions to tag clearing

36
Morello is tag clearing

Product of merged
register file!

Page Table Permissions

• Can track "capability free" pages to support sweeping for revocation

• Also supports experimental capability load detection

37

PTE bits for capability stores (mirrors W & D flags)

Five new bits for sv39 Page Table Entries (PTEs):

PTE bits for capability loads

Possibly more complex than
commercially necessary for

experimentation...

CSRs and
Special Capability Registers

• PCC and DDC are universally
accessible CSRs

• DDC and PCC hold the "almighty
capability" on reset

• Scratch registers per privilege level

• New xtval for capability violations

• CSR whitelist when Access System
Registers (ASR) is not set in PCC

38

DDC in a GPR causes new dependencies
for all non-capability memory operations

To gain permissions on ring change

Allows compartmentalisation in the
kernel and a user-space supervisor

CSR whitelistNew CSRs

Special Capability Registers

Both RV32 and RV64 are supported

• RV32 (CHERI64) and RV64 (CHERI128) are specified

• Would be interesting to experiment with RV64 with CHERI64
(sv32) to learn about implications of RV128 in CHERI128

39

Research is ongoing for mixed-width
implementations

CHERI128 Relationship with RV128

• Not quite RV128

• Added Load and Store Quad instructions

• But lacking 128-bit arithmetic instructions

• If an implementation had both, would we want new loads and
stores to preserve intentionality? (New tag-clearing LQ/SQ)

40

sv64 (64-bit virtual addresses)
with RV128 is not unreasonable;

i.e. XLEN = 2×"VA-LEN"

Conclusions

• CHERI academic research has moved fully to the CHERI-RISC-V
architecture

• Lots of implementations:

• Fully featured LLVM compiler support

• CheriBSD with full software stack building in pure-capability mode
41

The Sail-CHERI-RISC-V model (CHERI-64/CHERI-128)

QEMU simulator (CHERI-64/CHERI-128)

CHERI Ibex (CHERI-64) (not up-to-date)

CHERI Piccolo (CHERI-64)

CHERI Flute (CHERI-64/CHERI-128)

CHERI RiscyOO CHERI-RISC-V (CHERI-128)

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Four CHERI-RISC-V Micro-Architectures
Peter Rugg, Jonathan Woodruff, Alexandre Joannou, Ivan Ribeiro,

Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker, John Baldwin, Hadrien Barrel,
Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis, Lawrence Esswood,

Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao, Khilan Gudka, Brett Gutstein, Mark Johnston, Robert Kovacsics,
Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi, Alan Mujumdar, Prashanth Mundkur,

Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright, Philip Paeps, Lucian Paul-Trifu,
Allison Randal, Alex Richardson, Michael Roe, Colin Rothwell, Hassen Saidi, Peter Sewell, Thomas Sewell,

Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week
Paris, 3-5 May 2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

43

Contents

• How to add CHERI to a core

• Shared components

• Tag controller

• Compression library

• Four implementations

• Per-core optimizations

CHERI-RISC-V Microarchitectural Changes

• Extend decode, registers, arithmetic, and memory access for
capabilities

• Capability CSRs and new capability exception behaviors

• Widen caches and add tag support

• Tagged AXI interconnect

• Performance counters

• Analyze performance, identify bottlenecks, and optimize
microarchitecture to meet timing and performance goals

CHERI-RISC-V Pipeline Changes

46

Instruction
Fetch

Writeback
Memory
Access

ExecuteDecode

Fetch address distinguished
from sandbox offset (PC)

Bounds check
added in parallel
with cache access

Capability
manipulation

added in parallel
with ALU

General
Purpose
Registers

Registers extended
with capability

metadata and tags

Branch
Predict

PC

PC extended to be
a capability

Capability offsets and
bounds legacy

memory operations
DDC

CHERI-RISC-V Reused Components

• AXITagController
Tag controller module manages combining tags with data

• Capability encoding library
Memory, register, and pipeline capability formats with functions for
each

• TestRIG testing framework
CHERI instruction definitions and templates for testing deep
capability states

47

Tagging Capabilities

• Capabilities have a hidden validity tag

• In registers and memory

• Tag bit is critical to security

• Conventional operations (arith, memory) clear the tag

• Only capability instructions preserve the tag and guarantee
monotonic decrease in rights

• One hidden bit per 128-bits avoids using other integrity measures
(no crypto needed…)

48

Propagating tags from registers to DRAM

• Tags stored in registers and
caches with data to ensure
consistency

• Off-chip storage:

• Tags stored in upper 1% of
commodity DRAM

• Tag cache per DRAM controller
reduces DRAM traffic

• No consistency issues

49

Core registers

= tag storage

L1 I-cache L1 D-cache

LL cache

DRAM controller Tag Cache

off-chip DRAM

Hierarchical Tag Compression

• Size tag cache line length to 64-byte DDR4 burst transfer size
⇒ one line covers tags for 8KiB of memory (128-bit capabilities)

• Many lines don’t contain tags (code, large blocks of data, disk cache,
etc.)

• So handling tag sparseness is important

• Only want to pay for tagging when needed

50

Tag Compression

• 2-level tag table

• Each bit in the root level indicates all zeros in a leaf group

• Reduces tag cache footprint

• Amplifies cache capacity

51

Figure 3 graphs the temporal and spatial hits in the tag cache
as the line size grows for the Earley-Boyer big case (256KiB
tag cache, 8-way associative). Spatial hits are on tags that
have not previously been accessed in the cache, i.e. that have
been brought in due to a miss on a nearby tag. Temporal
hits are on tags that have previously been accessed and are
re-accessed due to lack of capacity in the upper layer of
cache. The graph begins with a tag cache line that covers one
data line. As the line size increases, spatial hits continue to
increase consistently until we reach lines of 512 tags (64 bytes)
which each cover a 4KiB page of data. Bigger lines benefit
spatial hits more then they harm temporal hits until lines of
approximately 4096 tags (512 bytes) which each cover 8 pages
of data memory. After that point, no more spatial locality
seems to be harvested from larger lines, but the number of
temporal hits still decreases, harming overall hit-rate. Thus
the tag cache can exploit spatial locality at page granularities
to reduce overhead from an expected 50% of DRAM traffic
to less than 5%, even for an unusually small capacity.

Silent-Write Elimination: Writes that rewrite the existing
value, or silent writes, are more common for tags than for
data and are more problematic. Silent tag writes are common
since tag metadata is often unchanged through data writes,
e.g., when updating untagged data. Tag lines are also much
more likely to be dirty than data lines, as the coarse line
granularity increases the probability that some bit will be
written. Our simulated tag cache eliminates these silent writes.
This optimization reduces dirty lines from 80% to 4% in the
pointer-sparse FFMPEG case, and from 60% to around 30%
for the pointer-heavy Earley-Boyer case. This feature makes
writeback traffic dependent on the value of the tags. Figure 8
includes several use cases, one of which sees a 30% reduction
of traffic overhead without compression due to tags changing
less frequently.

B. Hardware Implementation
We rebuilt the tag controller engine in the open-source

CHERI processor (http://www.bericpu.org/), and added perfor-
mance counters to the CHERI cache. CHERI is instantiated
with 32KiB L1 caches and a 256KiB L2 cache, all 4-way set
associative with 128-byte lines. CHERI requires a tag bit for
each 256-bit word, resulting in a natural caching amplification
factor of 256. Our new tag controller includes a lookup engine
backed by a 32KiB 4-way set-associative cache with 128-byte
lines, matching the burst size in the CHERI system. Since
each cached tag bit covers 256 bits of data memory, each 128-
byte line in the tag-table cache provides tags for 32 kilobytes
of data memory. We restricted ourselves to a standard cache
instantiation for the tag controller which did not allow silent-
write elimination so this feature was not evaluated in hardware.

Benchmark results for this basic FPGA implementation are
shown as the Uncompressed case in Figure 9. All of our
benchmarks were compiled to use 256-bit CHERI capabilities
for all pointers, though the tag values do not affect hit rates for
the uncompressed case. Our benchmarks include a selection of
Octane benchmarks running under the Duktape interpreter and

of MiBench benchmarks running natively. DRAM overhead
was below 3% for programs with data sets contained in the
multi-megabyte reach of the tag cache. The Splay benchmark
with a working set of over 100MB still maintained an overhead
of less than 8%.

VI. TAG-TABLE CACHE COMPRESSION

Tag-table compression reduces cache footprint by taking
advantage of likely patterns in adjacent tag-bit values. Our
focus is on compression for caching rather than reducing the
size of the table in memory, as the table itself occupies a
very small proportion of DRAM, and the full capacity is
required in the worst case. As compressibility depends heavily
on probable distributions, we must select a tag use case to gain
concrete insights into compressibility.

Three prominent approaches have been taken for tag com-
pression. The Range Cache approach compressed arbitrary
ranges of tags with the same value, and was particularly useful
for large MTB systems [10]. The Multi-granularity tagging
approach indicates the presence or absence of tags using
the TLB, eliminating tag lookup for the majority of cases.
Most of these systems keep tags on virtual memory such that
tag storage is entirely under software control [9], [15], [33].
Our approach is a fully hardware-managed1 hierarchical tag
table in physical memory that performs compression while
emulating a flat tag space.

A. Hierarchical Tag Table
To optimize for regions that contain no tags, we may

implement a two-level table where a bit in the root level
indicates whether any bits are set in a group of leaf level
bits. In the example in Figure 4, one bit in the root level can
be cleared to indicate that 512 bits in the leaf level are all zero
and need not be accessed on a read or on a write of zero. We
refer to the group granularity as the grouping factor “GF”, as
this is the factor by which the tag footprint can be compressed
for groups with no pointers. All tag-table lookups must access
the root level, but only addresses that lie in a group including a
tagged word must access the leaf level. It is simple to maintain
such a hierarchy. Each time we clear a tag bit in the leaf level,
we must check whether the rest of the tags in the group are
zero, clearing the bit in the root level if this is the case. On
boot up, we must clear only the root level of the table to clear
the tag bits on all of memory.

root tabletag-cache line

leaf table

1 bit
tag-cache line

512 bits

. . .

. . .

Fig. 4. Hierarchical table structure for grouping factor of 512

Crucially, this scheme eliminates table-cache pressure for
applications that do not use tagged pointers. In addition, this

1WHISK demonstrates that the root level of a two-level tag table can be
managed in software at the cost of flushing tag caches on root updates [31].

64 bytes

Tags for a
8KiB of data

1 bit per 8KiB of data: 0 for no tags set
root table

leaf table

Capability Compression

52

Capabilities encode at least 3 64-bit fields:

Top

Bottom

Address

063

But we can encode the Top and Bottom relative to the Address:

• Larger objects require greater alignment

• Address must be “near” the Top and Bottom

Top

Bottom

Address

063

← Exponent: Exp

Capability Compression Shared Library

• Capabilities partially decompressed in stages throughout pipeline

• Shared library between all four implementations

Memory Capability
Architectural “CHERI-concentrate” format

128 bits

XOR + Shift + Multiplex

“Exponent” and “Mantissa” extracted
152 bits

Compression edge-cases identified
162 bits

Comparisons

Register Capability

Pipeline Capability

Baseline Processors

• Piccolo - Bluespec

32-bit 3-stage in-order microcontroller (Bluespec Inc.)

• Ibex -Verilog

32-bit highly area-optimised microcontroller (lowRISC)

• Flute - Bluespec

64-bit 5-stage in-order microcontroller (Bluespec Inc.)

• Toooba - Bluespec

64-bit out-of-order superscalar (Bluespec Inc.) based on RiscyOO
(MIT)

CHERI-RISC-V Scaling Across Cores
• CHERI Piccolo and CHERI Ibex – Power and Area

Small core (no MMU or FPU), so logic overhead is most significant

Where present, very small cache, so DRAM traffic (i.e. power) overhead is
pronounced

• CHERI Flute – Frequency and Prediction

Deeper pipeline, higher frequency (100Mhz), so sensitive to timing

Performance depends on predicting branches and forwarding results

• CHERI Toooba – Concurrency, Prediction, and Multicore

Superscalar execution and performance is sensitive to parallelism

Higher cost of misprediction and performance is very sensitive to accuracy

55

CHERI Flute – Challenge 1 – Frequency
• Highest target frequency (100MHz). Initial

design failed timing.

• Solution: careful optimization

• Make forwarding independent of bounds check

• Add latch between instruction cache and AXI
interconnect

• Expose cache invariants to synthesis tool

• Latch computed SCR value

• Refactor check for misprediction

• Delay capability trap infrequent path
(performance penalty only on trap)

• Rebalance floating point latching

56

CHERI Flute – Challenge 2 – Prediction

• First core with prediction: fetch requests
are sent to the instruction memory before
the capability used is known

• Various possibilities, e.g. predict entire
capability, predict address or offset

• Solution: Divide core into front-end
working with predicted raw addresses, and
back-end working with full capabilities

• Also need to speculate "capability
encoding mode": add to predicted state

57

Fetch

Decode

Execute

Memory
Access

Writeback

Branch
predictor

Addresses

Capabilities

Check:
predicted address

==
PCC.address

CHERI Flute – Challenge 3 – DRAM traffic
• DRAM overhead was high initial

CHERI-Flute implementation (16.9%
overhead)

Write-through caches: capability writes
double DRAM traffic of integer writes.
Pushing to the stack twice as expensive
with purecap!

• Page table miss traffic was a large
contribution to DRAM traffic
The page table walks (uncached) directly
accessed DRAM

2-way associative TLB meets the
power/DRAM 5% target (-0.6% overhead)

58

CHERI Toooba – Challenge 1 – Reorder Buffer
Initial Reorder Buffer (state for 64 in-flight instructions)
184% overhead

• Solution 1: Change enum structure to avoid explosion

Bluespec compiler was inefficient for sparse enum assignments; CHERI Toooba used
these more than Toooba

• Solution 2: Eliminate three 64-bit registers from records

Derivable from other state (TVAL) or unnecessary in our configuration (dest_data,
store_data)

• Solution 3: MUX out of Reorder Buffer rows into ALU

64 MUXs (1 per record) -> 2 MUXs (1 per ALU pipe)

Currently 2% overhead for Reorder buffer

59

rob 0
rob 1

rob 63

...

rob 0
rob 1

rob 63

...

Old Design Solution 3

CHERI Toooba – Challenge 2 – PCC Metadata
• Prediction/fetch/decode granularity

32 bits -> 16 bits for compressed instructions

Each granule has PCC and predicted next PCC:
256 bits of address metadata per 16-bit granule

• The distinct PC segments guaranteed to be 1/8 the
maximum granules

Fetch blocks of up to 4 granules share a segment
Any predicted PC will be shared with the next block

• Introduce compression table in 4 stages of Fetch

PC now represented by 15 bits

30 bits per 16-bit granule

60

Pipeline Token

12 bits

3 bits

8 entries Table Instantiation

Fetch 1

Fetch 2

Fetch 3

Decode

PC+PCC

PC+PCC

(PC+PCC)x4

pcBlocks

Insert

Lookup x 5

CHERI Toooba – Challenge 3 – BTB Contention

• CHERI pointers cause higher DRAM traffic

• Misprediction causes wasted traffic in Toooba

Deep, out-of-order speculation means
unnecessary memory traffic caused
by misspeculated loads

• Use a 2-way associative Branch Target Buffer
(BTB) to compensate for DRAM overhead

13.07% -> 4.6% DRAM Overhead

• Segmented BTB to more-than-compensate
for the area overhead

61

Original BTB

25
6

25
6

(c
op

y)

25
6

(c
op

y)

25
6

(c
op

y)

PC
+2

PC

PC
+4

PC
+6

PC
C

?

PC
C

?

PC
C

?

PC
C

?

New, 2-way associative
BTBPC

+2

PC

PC
+4

PC
+6

PC
C

?

32 32 32 32 32 32 32 32

PC
C

?

PC
C

?

PC
C

?

Each PC alignment
can only be found in
one set; duplication
unnecessary.

Conclusions

• CHERI security extensions have been applied to a range of cores

• Microcontrollers to a superscalar core for CHERI-RISC-V

• Arm Morello SoC also demonstrates that CHERI can be added
to a commercial core (Neoverse N1)

• CHERI comes with some costs, but careful microarchitectural
optimization reduces these substantially

62

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

The CHERI-RISC-V Software Ecosystem
and Toolchain

Alex Richardson, Jessica Clarke, David Chisnall, Brooks Davis, John Baldwin
Robert N. M. Watson, Simon W. Moore, Peter G. Neumann, Hesham Almatary, Alasdair Armstrong, Peter Blandford-Baker,
Hadrien Barrel, Thomas Bauereiss, Ruslan Bukin, Lawrence Esswood, Nathaniel W. Filardo, Franz Fuchs, Dapeng Gao,
Khilan Gudka, Brett Gutstein, Alexandre Joannou, Mark Johnston, Robert Kovacsics, Ben Laurie, A.Theo Markettos,

J. Edward Maste, Alfredo Mazzinghi, Prashanth Mundkur, Edward Napierala, George Neville-Neil, Robert Norton-Wright,
Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Michael Roe, Peter Rugg, Peter Sewell, Thomas Sewell,

Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera, Konrad Witaszczyk, Jonathan Woodruff, and Hongyan Xia

University of Cambridge and SRI International

RISC-V Week
Paris, 3-5 May 2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

64

Compiling for CHERI RISC-V
• How can we make use of CHERI capabilities for C/C++ code?

• Use CHERI LLVM: https://github.com/CTSRD-CHERI/llvm-project

#include <stdio.h>

int main(void) {
printf("Hello world\n");

}

main:
addi sp, sp, -16
sd ra, 8(sp)

.LBB0_1:
auipc a0, %pcrel_hi(.Lstr)
addi a0, a0, %pcrel_lo(.LBB0_1)
call puts
mv a0, zero
ld ra, 8(sp)
addi sp, sp, 16
ret

.Lstr:

.asciz "Hello world"

main:
cincoffset csp, csp, -16
csc cra, 0(csp)

.LBB0_1:
auipcc ca0, %captab_pcrel_hi(.Lstr)
clc ca0, %pcrel_lo(.LBB0_1)(ca0)
ccall puts
mv a0, zero
clc cra, 0(csp)
cincoffset csp, csp, 16
cret

.Lstr:

.asciz "Hello world"

C
RISC-V Assembly

-march=rv64gc -mabi=lp64d
CHERI RISC-V Assembly

-march=rv64gcxcheri -mabi=l64pc128d

1. Adjust stack pointer
2. Save return address

3. Generate pointer to .Lstr

4. Call printf()
5. Set return value to zero
6. Restore return address
7. Adjust stack pointer
8. Return

https://github.com/CTSRD-CHERI/llvm-project

https://cheri-compiler-explorer.cl.cam.ac.uk

66

https://cheri-compiler-explorer.cl.cam.ac.uk/

Automatic capability bounds (1)

• OS kernel, run-time linker, memory allocator(s) and compiler take
care of automatic capability bounds refinement

• On execve() initial (bounded) capabilities set up by OS kernel

• Run-time linker loads data & code for libraries using mmap()

• Kernel returns a new bounded capability for mmap()

• Run-time linker then processes relocations and creates bounded
capabilities for global variables and functions

• malloc() ensures that allocation is correctly bouded

67

Automatic capability bounds (2)

68

Compiler automatically
inserts bounds for stack

buffers (if necessary)

Without CHERI the
unbounded buffer allows

caller to overflow the stack!

The compiler automatically adds bounds e.g. for stack allocations:

Automatic capability bounds (3)

69

Opt-in support for preventing sub-object overflows (at a moderate compatibility cost).

Callee can only access the
16 bytes of the name array

Callee gets access to the
entire allocation

Sub-object overflow could corrupt UID
or the function pointer (although CHERI

ensures the latter is not callable!)

70

Memory protection for the language and the language runtime
• Capabilities are refined by the kernel, run-time linker,

compiler-generated code, heap allocator, …

• Protection mechanisms:

• Referential memory safety

• Spatial memory safety + privilege minimization

• Temporal memory safety

• Applied automatically at two levels:

• Language-level pointers point explicitly at stack
and heap allocations, global variables, …

• Sub-language pointers used to implement
control flow, linkage, etc.

• Sub-language protection mitigates bugs in the language
runtime and generated code, as well as attacks that
cannot be mitigated by higher-level memory safety

70

Language-level memory safety

Pointers to heap
allocations

Pointers to stack
allocations

Pointers to
global variables

Pointers to TLS
variables

Function
pointers Pointers to

memory mappings

Pointers to sub-
objects

Sub-language memory safety

GOT
pointersReturn

addresses

PLT entry
pointers

ELF aux arg
pointersStack

pointers

C++ vtable
pointers

Vararg array
pointers

Portability when compiling for CHERI-RISC-V
• In general, most code will just work as-is or be flagged by compiler warnings

• However, a few common issues exist:

• Insufficient alignment (e.g. in memory allocators)

• Loading/storing pointers needs stricter alignment (16 bytes for CHERI-128)

• Allocators should use alignof(max_align_t) instead of hardcoding 8

• Incorrectly casting pointers to or from long

• long can only hold the address part, bounds and validity are lost when casting

• Please use C99 uintptr_t instead (using long is not allowed by C standard)

• Updating pointers after realloc() may require auditing

• More details: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

71

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

Operating system support
• Most mature OS is CheriBSD,

FreeBSD with full support for pure-
capability CHERI code

• https://github.com/CTSRD-
CHERI/cheribsd

• Even runs a memory safe KDE
graphical desktop!

• 0.026% LoC modification
rate across full corpus for
memory safety

• 73.8% mitigation rate across
full corpus, using memory safety
and compartmentalization

72

https://github.com/CTSRD-CHERI/cheribsd

Debugging
• We have a version GDB with support for CHERI-RISC-V available

at https://github.com/CTSRD-CHERI/gdb

• Generally works just as you are used to it

73

Starting program: /opt/cheri-exercises/buffer-overflow-stack-cheri

Program received signal SIGPROT, CHERI protection violation
Capability bounds fault caused by register ca1.
0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,0x3fffdfff5c-0x3fffdfff6c] "", ix=16)
at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13
13 src/exercises/buffer-overflow-stack/buffer-overflow-stack.c: No such file or
directory.
(gdb) bt
#0 0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,0x3fffdfff5c-0x3fffdfff6c] "",
ix=16) at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13
#1 0x0000000000101e98 in main () at src/exercises/buffer-overflow-stack/buffer-overflow-
stack.c:31
(gdb)

https://github.com/CTSRD-CHERI/gdb

Debugging
• We have a version GDB with support for CHERI-RISC-V available

at https://github.com/CTSRD-CHERI/gdb

• Generally works just as you are used to it

74

Starting program: /opt/cheri-exercises/buffer-overflow-stack-cheri

Program received signal SIGPROT, CHERI protection violation
Capability bounds fault caused by register ca1.
0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,0x3fffdfff5c-0x3fffdfff6c] "", ix=16)
at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13
13 src/exercises/buffer-overflow-stack/buffer-overflow-stack.c: No such file or
directory.
(gdb) bt
#0 0x0000000000101dae in write_buf (buf=0x3fffdfff5c [rwRW,0x3fffdfff5c-0x3fffdfff6c] "",
ix=16) at src/exercises/buffer-overflow-stack/buffer-overflow-stack.c:13
#1 0x0000000000101e98 in main () at src/exercises/buffer-overflow-stack/buffer-overflow-
stack.c:31
(gdb)

Capability permissions Upper and lower bound

https://github.com/CTSRD-CHERI/gdb

Emulators

• QEMU: https://github.com/CTSRD-CHERI/qemu

• Fast and mature emulator including instruction tracing and GDB
support for bare-metal debugging

• Easiest way to get started with CHERI – no need for an FPGA

• Sail model: https://github.com/CTSRD-CHERI/sail-cheri-riscv

• Reference model for 32 and 64-bit CHERI-RISC-V

75

https://github.com/CTSRD-CHERI/qemu
https://github.com/CTSRD-CHERI/sail-cheri-riscv

Tying it all together - cheribuild

• Yet another meta build system for CHERI software

• Builds all the projects needed to run CheriBSD (and much more)

• To get started: cheribuild.py run-riscv64-purecap –d

• Can also cross-compile hundreds of additional projects that aren’t
packaged yet for CheriBSD, e.g. kde-x11-desktop

• Automates various steps such as build and installation, booting
CheriBSD and running (cross-compiled) test suites

• Available at htts://github.com/CTSRD-CHERI/cheribuild

76

https://github.com/CTSRD-CHERI/cheribuild

Conclusions

• CHERI RISC-V has a mature software ecosystem including OS
support (CheriBSD), emulators (QEMU) and debuggers (GDB)

• All of these projects are open-source and available on GitHub:
https://github.com/CTSRD-CHERI/

• Key takeaways from this talk:

• Using CHERI-RISC-V should feel essentially the same as RISC-V

• Even if you don’t plan on using CHERI for your code: please use
(u)intptr_t when casting pointers to integers

77

https://github.com/CTSRD-CHERI/

Approved for public release; distribution is unlimited. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this article/presentation are those of the
author(s)/presenter(s) and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

CHERI-RISC-V demo
Demonstrating Memory-safety Features under CheriBSD on a Multi-core, Superscalar Softcore

Franz Fuchs, Robert N. M. Watson, Simon W. Moore, Peter Sewell, Peter G. Neumann
Hesham Almatary, Jonathan Anderson, Alasdair Armstrong, Peter Blandford-Baker,

John Baldwin, Hadrien Barrel,Thomas Bauereiss, Ruslan Bukin, David Chisnall, Jessica Clarke, Nirav Dave, Brooks Davis,
Lawrence Esswood, Nathaniel W. Filardo, Dapeng Gao, Khilan Gudka, Brett Gutstein, Alexandre Joannou,

Mark Johnston, Robert Kovacsics, Ben Laurie, A.Theo Markettos, J. Edward Maste, Alfredo Mazzinghi,
Alan Mujumdar, Prashanth Mundkur, Steven J. Murdoch, Edward Napierala, George Neville-Neil, Robert Norton-Wright,

Philip Paeps, Lucian Paul-Trifu, Allison Randal, Ivan Ribeiro, Alex Richardson, Michael Roe, Colin Rothwell, Peter Rugg,
Hassen Saidi, Peter Sewell, Thomas Sewell, Stacey Son, Domagoj Stolfa, Andrew Turner, MunrajVadera,

Konrad Witaszczyk, Jonathan Woodruff, Hongyan Xia, and Bjoern A. Zeeb

University of Cambridge and SRI International

RISC-V Week
Paris, 3-5 May 2022

Approved for public release; distribution is unlimited.

This work was supported by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research
Laboratory (AFRL), under contract FA8750-10-C-0237 (“CTSRD”), with additional support from FA8750-11-C-0249
(“MRC2”), HR0011-18-C-0016 (“ECATS”), and FA8650-18-C-7809 (“CIFV”) as part of the DARPA CRASH, MRC, and
SSITH research programs. The views, opinions, and/or findings contained in this report are those of the authors and should
not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

This work was supported in part by the Innovate UK project Digital Security by Design (DSbD) Technology Platform
Prototype, 105694.

We also acknowledge the EPSRC REMS Programme Grant (EP/K008528/1), the ERC ELVER Advanced Grant (789108), the
Isaac Newton Trust, the UK Higher Education Innovation Fund (HEIF), Thales E-Security, Microsoft Research Cambridge,
Arm Limited, Google, Google DeepMind, HP Enterprise, and the Gates Cambridge Trust.

79

80

This presentation is based on material prepared by the CHERI project:

Adversarial CHERI Exercises and Missions:

https://ctsrd-cheri.github.io/cheri-exercises/

CHERI Workshops:

https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/workshops/

https://ctsrd-cheri.github.io/cheri-exercises/
https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/workshops/

81

Cross-compiling CHERI Binaries

clang -target riscv64-unknown-freebsd --sysroot=/path/to/sysroot-
riscv64-purecap/ -mno-relax -march=rv64gc -mabi=lp64d source.c -o
binary

clang -target riscv64-unknown-freebsd --sysroot=/path/to/sysroot-
riscv64-purecap/ -mno-relax -march=rv64gcxcheri -mabi=lp64pc128d
-Wcheri source.c -o binary

Compile for 128-bit
capability CHERI target

Enable all CHERI
warnings

Compile for
baseline

Compile for
CHERI-RISC-V

CHERI Pointers and Addresses

82

int main(void){
printf("size of pointer: %zu\n", sizeof(void *));
printf("size of address: %zu\n", sizeof(ptraddr_t));
return (0);

}

Dual-core processor running on FPGA

Legacy: pointer size = address size

CHERI: pointer size = address size + 8
bytes of CHERI metadata

83

CHERI tag protection (1/2)
char buf[0x1FF];
volatile union { char *ptr;

char bytes[sizeof(char*)];
}p;

for (size_t i = 0; i < sizeof(buf); i++) {
buf[i] = i;

}

p.ptr = &buf[0x10F];
char *q = (char*)(((uintptr_t)p.ptr) & ~0xFF);
printf("q=%" PRINTF_PTR " (0x%zx into buf)\n", q, q - buf);
printf("*q=%02x\n", *q);

p.bytes[0] = 0;
char *r = p.ptr;
printf("r=%" PRINTF_PTR " (0x%zx)\n", r, r - buf);
printf("*r=%02x\n", *r);

Declare a character buffer and a
union struct

Fill the buffer with sequence of
values

Assign p.ptr to part of buf

Assign q to an aligned address in
buf, and print status

Attempt to assign r to an aligned
address in buf via the p.bytes field
and print status

84

CHERI tag protection

Writing to pointer and writing to a data
array are both valid on the baseline

Write to capability with a capability
operation works fine

Data write strips validity tag

Dereferencing an invalid capability leads
to an exception

85

Buffer Overflow (1/3)

char upper[0x10];
char lower[0x10];

printf("upper = %p, lower = %p, diff = %zx\n",
upper, lower, (size_t)(upper - lower));

upper[0] = 'a';
printf("upper[0] = %c\n", upper[0]);

lower[sizeof(lower)] = 'b’;
printf("upper[0] = %c\n", upper[0]);

Declare two buffers at consecutive
addresses

Print memory layout of buffers

Out-of-bounds write to lower and
print status of upper to see
whether buffer overflow worked

Write to buffer upper and print
status

86

Buffer Overflow (2/3)

Buffer overflow successful due to missing
bounds information on baseline

upper and lower are guarded by
capabilities limiting each buffer to 16

byte bounds

Out-of-bounds write leads to CHERI
exception

87

Buffer Overflow (3/3)
<setup_cap>:
cincoffset ca0, csp, 48
csetbounds cs0, ca0, 16

cincoffset ca0, csp, 64
csetbounds cs1, ca0, 16

…

<write_to_lower>:
addi a1, zero, 16
cincoffset cs0, cs0, a1

addi a1, zero, 98

csb a1, 0(cs0)

Create capability for buffer lower
and set 16 byte bounds

Create capability for buffer upper at
consecutive addresses and set 16
byte boundaries

Move capability address out of
bounds because a1 = 16

Store character ‘b’ in a1

Store byte to memory; CHERI
exception due to address out-of-
bounds

CHERI C/C++: pointer provenance validity (1/2)

• An integer data type cast to a pointer data type results in a NULL-derived capability
without a tag;

• However, there are data types that can hold pointer or integer values (e.g., uintptr_t).

• In the CHERI memory protection model, capabilities are derived from a single other
capability;

• In CHERI C/C++, a capability can be a result of a complex expression with multiple
data types and casts.

CHERI C/C++ Programming Guide, Section 4.2, 4.2.1, and 4.2.3
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf)

88

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

CHERI C/C++: pointer provenance validity (2/2)

• Ideally, we would like to recompile source code for CheriABI and
automatically gain security;

• Unfortunately, there is a lot of software that use incorrect data
types to hold values that fit in them but have different semantics.

89

CHERI LLVM: CHERI compiler warnings and errors

CHERI LLVM can identify capability-related issues and print warnings:

• Loss of provenance (-Wcheri-capability-misuse);

• Ambiguous provenance (-Wcheri-provenance);

• Underaligned capabilities of packed structures (-Wcheri-capability-misuse);

• Underaligned load of capability type (-Wcheri-inefficient).

CHERI C/C++ Programming Guide, Chapter 6
(https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf)

90

https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

Example broken cat program

We modified the cat(1) program from CheriBSD/FreeBSD to introduce
two bugs:

1. Loss of provenance.

2. Provenance-free integer type to pointer type cast.

91

CHERI LLVM: CHERI compiler warnings and errors

92

Let’s try to compile cat!

Potential loss of provenance: we have
given the compiler multiple choices for a
source of provenance and the compiler

might have picked the wrong one

We are trying to case a non-pointer type
to a pointer type; we need a valid

capability as a source of provenance

93

Conclusions

• CHERI HW/SW stack is fully working

• CHERI enforces intentionality

• Provenance validity and bounds checking lead to strong spatial
memory safety that eliminates security bugs

• CHERI LLVM helps a developer to adapt a C/C++ program to
CHERI C/C++

• Source code changes are needed where source of provenance is
not clear, where non-pointer to pointer casting is done, and where
alignments enforced by the developer are incorrect

WRAP UP

94

Wrap Up

• CHERI is a stable platform:

• Demonstrated on RISC-V and Arm (previously on MIPS)

• Full software stack (compiler, linker, OSs, etc.)

• Formal verification of key security properties

• Our aim:

• CHERI on every platform with no IP restrictions

• Looking to ratify CHERI as an official RISC-V extension

95

Project website: https://www.cl.cam.ac.uk/research/security/ctsrd/cheri/

