
Confidential ©2022 SiFive

RISC-V IOMMU
Architecture Overview

RISC-V Spring Week, May 5th

Vedvyas Shanbhogue, Rivos Inc. (Chair)
Perrine Peresse, SiFive (Vice-Chair)

Confidential ©2022 SiFive

Agenda

2

 What is an IOMMU ? Why do we need it ?

 IOMMU usage models

 Baseline architecture overview

 Placement/features

 Data structure

 SW interface

 IOMMU TG Goal / Status

 Join us !

Confidential ©2022 SiFive

What is an IOMMU? Why do we need it ?

 No protection from SW bugs in device driver or malicious driver
or misbehaving IO device

IO device

System memory

RISC-V hart

MMU

VA

SPA

S-stage

Single stage

translation

DMA setup with physical addresses

Permission

check

NO

check

IO device

System memory

RISC-V hart

MMU

VA

SPA

S-stage

Single stage

translation

DMA setup with IO virtual addresses

Permission

check

IOMMU

IOVA

SPA

Permission

check

Non-virtualized system without an IOMMU Non-virtualized system with an IOMMU

 IOMMU performs:

 Single stage address translation and permission checks

 IOMMU provides:

 Memory protection from IO device DMA

 Mapping of contiguous IOVA to an underlying fragmented PA

(avoidance of scatter/gather lists)

 Enable 32b legacy IO device to access > 4GB (no bounce buffers)

Physical Addresses Physical Addresses

Confidential ©2022 SiFive

RISC-V hart

with MMU

IO device

System memory

Virtualized system without an IOMMU

Guest

OS

Guest

OS

Hypervisor

GVA

GPA

SPA

VS-stage

G-stage

Physical Addresses

RISC-V core

with MMU

IO device

System memory

Virtualized system with an IOMMU

Guest

OS

Guest

OS

Hypervisor

GVA

GPA

SPA

VS-stage

G-stage

Physical Addresses

IOMMU

Core MMU does

address translation

and memory protection

Virtualization on the core provides Guest OS memory isolation.

IOVA

SPA

DMA operation on IO device must be mediated by hypervisor.

DMA setup DMA setup

VS-

Permission

check

G-

Permission

check

VS-

Permission

check

G-

Permission

check

Why do we need an IOMMU in a virtualized system?

Confidential ©2022 SiFive

Why do we need an IOMMU in a virtualized system?

 Guest OS has a direct access to the IO device.

 IOMMU provides:

 Memory protection from IO device DMA

 Virtual address translation for IO device DMA

 Virtual address space sharing between IO and CPU

 Interrupt remapping and virtualization

RISC-V core

with MMU

IO device

System memory

Virtualized system with an IOMMU

Guest

OS

Guest

OS

Hypervisor

GVA

GPA

SPA

VS-stage

G-stage

Physical Addresses

IOMMU

IOVA

SPA

DMA setup

VS-

Permission

check

G-

Permission

check

Confidential ©2022 SiFive

RISC-V IOMMU Placement and features

6

 RISC-V IOMMU ’s main features:
 Address translation and protection

 single stage (or S-stage) equivalent to satp register
behavior

 two-stage translation (VS-stage and G-stage) equivalent
to vsatp and hgatp register behavior

 Support multiple concurrent devices and translation contexts
 Support standard interfaces such as PCIe with PASID, ATS and PRI
 Compliant to the RISC-V Privilege specification 1.12

(Hypervisor extension, Svpbmt, Svnapot)
 Compliant to AIA specification emphasizing MSI virtualization
 Assigning physical memory types/attributes to accesses from

devices and the IOMMU
 Optional hardware performance monitoring unit
 Co-existence with physical memory protection mechanisms to

isolate M-mode resources from access by devices and the
IOMMU itself.

Confidential ©2022 SiFive

IOMMU High-Level Architecture for Address Translation

7

IOMMU

The IOMMU maintains translations for multiple contexts and HARTs

IO Device

Bus Device Function
PASID
SoC-specific information

HardContext
ID Function

Hardware ContextID which consists
of a DeviceID and ProcessID

Device Virtual Address (IOVA)

Implementation-defined
Known to software

IOTLB

PTW

Translated Physical Address

Context
information

cache

Software ContextID
which consists of a
Guest-SCID and
Process-SCID

Page
Table

Access

Context
Directory
Access

CDW

Confidential ©2022 SiFive

RISC-V IOMMU baseline data structures

8

Device Context

Process Context

G-stage

S/VS-stage

Pointer to Process directory

Example of an IO device
with ProcessID in a
virtualized system

 Unique hardware identification:
 DeviceID up to 24 bits
 ProcessID up to 20 bits

 Software Context Identification:
 GSCID up to 16 bits (to identify VM)
 PSCID up to 20 bits (to identify a process address space)

 Context information
 Device Directory table is set by SW in system memory by highest privilege level.
 Process Directory table can be set by guest.

 Multi-level hierarchical table in system memory

Confidential ©2022 SiFive

Software Interface
In addition to the memory mapped register space for IOMMU ’s configuration and the memory-based structures (Device,
Process Directories and the Page Tables), software requires the following circular buffer queues in system memory:

9

 Command Queue

 Why ? To improve performance, the IOMMU can cache some context or

translation information locally. SW must be able to invalidate any entry.

 Commands are submitted by SW

 Commands are processed and completed by IOMMU

Head pointer
managed by
consumer

Tail pointer
managed

by producer

base Fault Queue

 Why ? Errors happen asynchronously to the CPU and many faults can occur

simultaneously.

 IOMMU reports any fault conditions encountered - e.g., page faults

 SW reads and handles any fault report

 Page Request Queue

 Why ? for endpoint device to request page to be made present

 Defined by PCIe ATS/PRI protocol

 SW reads page request messages from device

Confidential ©2022 SiFive

Summary and call for action

10

 Creation:

 Early December 2021

 Four I/O MMU specifications were donated to RVI (Rivos Inc., T-head, SiFive and Thales)

 Goal: To develop a unified, advanced IOMMU architecture appropriate for RISC-V platforms

2021

Plan for v1.0

ratification

12/2022

2022

Baseline

new features

Future

2023

IOMMU TG

creation

12/2021

 Working draft specification v0.1:

https://github.com/riscv-non-isa/riscv-iommu

 QEMU and linux driver development: in progress (Target August 2022).

Need help and contribution !

 Future enhancements:

 Hardware acceleration for virtualizing IOMMU

 Confidential computing

 Quality of service

Draft v0.1

specification

4/2022

https://github.com/riscv-non-isa/riscv-iommu

Confidential ©2022 SiFive

©2022 SiFive, Inc. All rights reserved. All trademarks referenced herein belong to their respective companies.
This presentation is intended for informational purposes only and does not form any type of warranty.

Certain information in this presentation may outline SiFive’s general product direction. The presentation
shall not serve to amend or affect the rights or obligations of SiFive or its licensees under any license or
service agreement or documentation relating to any SiFive product. The development, release, and timing of
any products, features, and functionality remains at SiFive’s sole discretion.

S I F I V E . C O M

Thank you

