
A CPU is Only as Good as its Ecosystem:

Olof Kindgren

Qamcom Research & Technology

FOSSi Foundation

Spring 2022 RISC-V week - Paris 2022.05.05

Turning RISC-V CPUs

into Systems with

FuseSoC

Who am I?

IP cores

Traditional HDL designs are built

from IP cores.

Ideally, a product should be built

upon a foundation of existing

commodity IP cores with the

value-add on top.

This is how software products are

normally developed.

APPLICATION SPECIFIC

COMMODITY

IP CORES

IP cores come from four sources.

A non-trivial design normally use a

mix of these.

● In-house developed

● 3rd party proprietary

● Platform-provided

● 3rd party open source

IP cores

APPLICATION SPECIFIC

COMMODITY

IP CORES

What is FuseSoc?

What is FuseSoc?

FuseSoC is a package manager…

What is FuseSoc?

FuseSoC is a package manager…

...and a build tool abstraction for HDL

What is a core?

What is a core?
It looks like you’re making an IP core.

Would you like help?

Get help with making the IP core

Just make the IP core without help

Don’t show me this tip again

Core description files describe

properties of the core that the EDA

tools need e.g.

● files

● parameters

● tool options

Core description files
...

targets:

nexys_a7:

default_tool: vivado

filesets: [rtl, nexys_files]

tools: [vivado: {part : xc7a100tcsg324-1}

toplevel: corey_top

tb:

default_tool: modelsim

filesets: [rtl, tb]

toplevel: corey_tb

tools:

modelsim:

vlog_options: [-timescale=1ns/1ns]

xsim:

xelab_options: [--timescale, 1ns/1ns]

Core description files can be stored

separately from the core, in which case

they contain info on how FuseSoC can

find the core files.

...

targets:

nexys_a7:

default_tool: vivado

filesets: [rtl, nexys_files]

tools: [vivado: {part : xc7a100tcsg324-1}

toplevel: corey_top

tb:

default_tool: modelsim

filesets: [rtl, tb]

toplevel: corey_tb

tools:

modelsim:

vlog_options: [-timescale=1ns/1ns]

xsim:

xelab_options: [--timescale, 1ns/1ns]

Core description files

Cores list their immediate dependencies

which forms dependency trees. FuseSoC

resolves the dependencies to find a set

of versions that satisfies all requirements.

What is a core?

coreyscore.core spi.core cpu.coreuart.core

socymcsocface.core

fifo.core

utils.core

Core description files can be grouped

into core libraries for easier management.

What is a core?

coreyscore.core

utils.core

spi.core

fifo.core

uart.core

coremensandiego.core

Targets describes ways to use the core

and its dependencies. Some targets, like

a simulation target, can support several

tools.

...

targets:

nexys_a7:

default_tool: vivado

filesets: [rtl, nexys_files]

tools: [vivado: {part : xc7a100tcsg324-1}

toplevel: corey_top

tb:

default_tool: modelsim

filesets: [rtl, tb]

toplevel: corey_tb

tools:

modelsim:

vlog_options: [-timescale=1ns/1ns]

xsim:

xelab_options: [--timescale, 1ns/1ns]

What is a core?

FuseSoC reads the core description file,

creates the appropriate tool setup files

and optionally runs the tool

FUSESOC RUN…

… --target=sim ---tool=verilator corey

… --target=nexys_a7 corey

… --target=de0_nano corey

… --target=sim --tool=icarus corey

Build or buy (or get for free)

FuseSoCIn-house solution

Build

Build

Build

MAINTENANCE

FEATURE

GROWTH

TRAINING

Buy/Get

for free

Build/buy

Build/Buy/

Get for free

Existing open source libraries

fusesoc-cores

orpsoc-cores

openpiton

opentitan

optimsoc

77

100

66

129

102

+ many smaller libraries e.g. CVA6, picorv32, PULP,

serv, microwatt, SweRV

+ many proprietary libraries

Most prominent open source silicon

projects already use or have started

looking at using FuseSoC

Tomorrow

● Increased adoption

● Expanded base library

● Additional EDA tool support

● Public package pool (à la pypi)

Future

● Industry standard

● World-class documentation

Future

● Industry standard

● World-class documentationin

Why use FuseSoc?

Increase reuse

Target different tools and devices with the same core description files

Share cores between different working groups

Reuse cores between projects

Reduce cost

Lower maintenance and on-boarding costs

Battle-proven base functionality that can be easily extended

Focus on your core business,

not your cores.

Backup slides

Core description files (generators)

EDA tools only speak (system)verilog (and VHDL). All other file

types must be generated before being sent to the EDA tool

Command-line

parameters

chisel

compiler

chisel

source

verilog

generated.core

Core description files (generators)
EDA tools only speak (system)verilog (and VHDL). All other file

types must be generated before being sent to the EDA tool.

Generators can be shared between cores

chiselgenerator.corechiselymcchiselface.core

generator

parameters

chisel

compiler

chisel

source

verilog

generated.core

Core description files (generators)Other examples

C =>

$readmemh files

IP-XACT toplevels => verilog

CPU configuration => VHDL/SV packages/defines

memory maps => interconnect

generators

ramgenerator.coreramymcramface.core

generator

parameters

RAM

compiler

verilog

Core description files (the other stuff)

Parameters

Tool-agnostic descriptions of `define, parameters, plusargs, generics…

Controllable from command-line

Script hooks

Inject custom scripts before and after setup, build and run

VPI

Tool-agnostic way of compiling VPI libraries

No DPI yet (but coming)

Probably more stuff I forgot

Ask me about FuseSoC

SweRV

RTL

Testbench

Documentation

Other stuff

SweRVolf

A basic SoC built around SweRV

● Primarily intended for FPGA prototyping

● Portable between devices

● Wide simulator support

● Extendable

● Modular

● Easy to use

● Zephyr OS support

SweRV

AXI crossbar

Boot

ROM

DDR

Controller
SPIGPIOUART Ethernet SD

D

M

A

Your

core?

SweRV

RTL

Testbench

Documentation

Other stuff

swerv.core

SweRVolf dependencies

axi_node.core swerv.core vlog_tb_utils.coreaxi_mem_if.core

swervolf.core

axi.core common_cells.core

generated.core

Core description files (generators)

swerv.coreswervolf.core

swerv

parameters

swerv

config gen

verilog

