A CPU is Only as Good as its Ecosystem:

Turning RISC-V CPUs into Systems with FuseSoC

Olof Kindgren

Qamcom Research & Technology FOSSi Foundation Spring 2022 RISC-V week - Paris 2022.05.05

Who am I?

Android crashes on boot when running from SD card

12:17 AM - 21 Mar 2017

Award-winning FOSSi Foundation COMPANY CONSIGNATION CONSIGNATI

RISCA

RISC-V SoftCPU Contest: Winners

• 1st Place: Charles Papon with VexRiscv - Awarded \$6,000 USD

2nd Place: Antti Lukats with Engine-V was

- Awarded \$3,000 USD, a Splash Kit and an iCE40 UltraPlus MDP

- 3rd Place: Changyi Gu with PulseRain Reindeer - Awarded \$1,000 USD, a PolarFire Evaluation Kit and an iCE40 UltraPlus Breakout Board

 Creativity Prize: Olof Kindgren with SERV - Awarded \$3,000 USD

IP cores

Traditional HDL designs are built from IP cores.

Ideally, a product should be built upon a foundation of existing commodity IP cores with the value-add on top.

This is how software products are normally developed.

APPLICATION SPECIFIC COMMODITY IP CORES

IP cores

IP cores come from four sources.

A non-trivial design normally use a mix of these.

- In-house developed
- 3rd party proprietary
- Platform-provided
- 3rd party open source

What is FuseSoc?

What is FuseSoc?

FuseSoC is a package manager...

What is FuseSoc?

FuseSoC is a package manager...

...and a build tool abstraction for HDL

It looks like you're making an IP core. Would you like help?

Get help with making the IP core

Just make the IP core without help

Don't show me this tip again

Core description files

targets: nexys_a7: default_tool: vivado **filesets:** [rtl, nexys_files] tools: [vivado: {part : xc7a100tcsg324-1} toplevel: corey_top tb: default tool: modelsim filesets: [rtl, tb] toplevel: corey_tb tools: modelsim: vlog_options: [-timescale=1ns/1ns] xsim: xelab_options: [--timescale Coreyscore.core

....

Core description files describe properties of the core that the EDA tools need e.g.

- files
- parameters
- tool options

Core description files

.... targets: nexys_a7: default tool: vivado filesets: [rtl, nexys_files] **tools:** [vivado: {part : xc7a100tcsg324-1} toplevel: corey_top tb: default tool: modelsim filesets: [rtl, tb] toplevel: corey_tb tools: modelsim: vlog_options: [-timescale=1ns/1ns] xsim: xelab_options: [--timescale Coreyscore.core

Targets describes ways to use the core and its dependencies. Some targets, like a simulation target, can support several tools.

Build or buy (or get for free)

Existing open source libraries

fusesoc-cores	77
orpsoc-cores	100
openpiton	66
opentitan	129
optimsoc	102

+ many smaller libraries e.g. CVA6, picorv32, PULP, serv, microwatt, SweRV

+ many proprietary libraries

Most prominent open source silicon projects already use or have started looking at using FuseSoC

Tomorrow

- Increased adoption
- Expanded base library
- Additional EDA tool support
- Public package pool (à la pypi)

Future

- Industry standard
- World-class documentation

Future

- Industry standard
- World class documcination

Why use FuseSoc?

Increase reuse

Target different tools and devices with the same core description files

Share cores between different working groups

Reuse cores between projects

Reduce cost

Lower maintenance and on-boarding costs

Battle-proven base functionality that can be easily extended

Focus on your core business, not your cores.

https://github.com/olofk/serv https://github.com/olofk/observer https://github.com/olofk/corescore

https://www.linkedin.com/in/olofkindgren

Thank you for your time

https://twitter.com/OlofKindgren

amcom

https://riscv.org/risc-v-ambassadors https://www.qamcom.com

https://github.com/olofk/fusesoc https://github.com/olofk/edalize

https://fossi-foundation.org https://chipsalliance.org

Backup slides

Core description files (generators)

EDA tools only speak (system)verilog (and VHDL). All other file types must be generated before being sent to the EDA tool

Core description files (generators)

EDA tools only speak (system)verilog (and VHDL). All other file types must be generated before being sent to the EDA tool.

Generators can be shared between cores

oth Core description files (generators)

\$readmemh files **IP-XACT** toplevels => verilog => VHDL/SV packages/defines

CPU configuration

memory maps

С

generators

=>

=> interconnect

Core description files (the other stuff)

Parameters

Tool-agnostic descriptions of `define, parameters, plusargs, generics... Controllable from command-line

Script hooks

Inject custom scripts before and after setup, build and run

VPI

Tool-agnostic way of compiling VPI libraries No DPI yet (but coming)

Probably more stuff I forgot

Ask me about FuseSoC

SweRV

SweRVolf

SweRV

SweRVolf dependencies

Core description files (generators)

