RISC-V compatible processor IP by Syntacore: compact open-source MCU to octacore SMP Linux

info@syntacore.com

RISC-V Spring Week, Paris
May 2022
Outline

- Company intro
- Current available IPs
- New IP for Q2 release
- SCR 7 benchmarking
 - Design environment and tools
- Summary
Syntacore introduction

Semiconductor IP company, founding premier member of RISC-V foundation

Develops and licenses state-of-the-art RISC-V cores
- Immediately available, silicon-proven and ships in volume
- 120+ years of combined RISC-V experience
- 400+ years of relevant background in the team
- SDKs, samples in silicon, full collateral

Full service to specialize CPU IP for customer needs
- One-stop workload-specific customization for 10x improvements
 - with tools/compiler support
- IP hardening at the required library node
- SoC integration and SW migration support
Company background

Est 2015, ~100 EE

European Headquarters
- HQ in Cyprus, UK and APAC business entities
- Full-time staff and representatives in APAC, EMEA and the US

Expertise:
- High-performance and low-power embedded cores and IP
- ASIP technologies and reconfigurable architectures
- Architectural exploration & workload characterization
- Compiler technologies

Focusing on application-class Linux-capable multicore CPU clusters + turnkey customization, in SV
Some current results

- State-of-the-art RISC-V CPU IP line with competitive features
 - Commercially deployed in SoCs up to 5nm
 - First RISC-V client silicon in 2016, first RISC-V Linux-capable IP in 2016, in full-wafer from 2017
 - Projects on 10+ nodes at 5 foundries (230 to 5nm)

- MPWs and full-wafer production. Projects examples:
 - 56-cores heterogeneous SoC @7nm (64bit, NuMA, complex system arch customization)
 - Active battery-less SoC @22nm (extensive power optimization, ntv-ready)

- Customers in APAC, EMEA and the US
 - References available
Current available IPs

- RTOS
 - RV64IMCFDA
 - RV64IMC[DA]
 - RV64IMC[A]
- Linux/Full OS
 - RV64IMC[FDA]
 - RV32IMC[FDA]
 - RV64IMCFDA
- SCR1
- SCR2
- SCR3
- SCR4
- SCR5
- SCR6
- SCR7

Area, power

- M0-M3
- M3-M33
- M4
- M55-M7
- A5-A7
- A53-A55

Performance

- 32-Bits
- 64-Bits

(*) new IP – coming soon
Entry-level server-class IP in Q2’22

Linux-capable application-class core, high-level features*:

- 8-16 cores per cluster
- Quad-issue
- Coherent NoC-based L3
- CHI external i/f
- SV39, SV48
- Ztso
- Hypervisor

Pre-announcing today, at lead customers starting Q2’22

(*) some features may be not available in the initial release
State-of-the art RISC-V CPU IP

Baseline cores:
- Clean-slate designs in System Verilog
- Configurable and extensible
- 100% compatible with major EDA flows
- Silicon-proven at the customers

<table>
<thead>
<tr>
<th>Features</th>
<th>SCR1</th>
<th>SCR3</th>
<th>SCR4</th>
<th>SCR5</th>
<th>SCR7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>32bit</td>
<td>64bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ISA</td>
<td>RV32I[E][M]</td>
<td>RV32I[64MVC][A]</td>
<td>RV32I[64MC][A</td>
<td>D]</td>
<td>RV32I[64MC][A</td>
</tr>
<tr>
<td>Pipeline type</td>
<td>In-order</td>
<td>In-order</td>
<td>In-order</td>
<td>In-order</td>
<td>Superscalar</td>
</tr>
<tr>
<td>Pipeline, stages</td>
<td>2-4</td>
<td>3-5</td>
<td>3-5</td>
<td>7-9-9</td>
<td>10-12</td>
</tr>
<tr>
<td>Branch prediction</td>
<td>Static BP, RAS</td>
<td>Static BP, RAS</td>
<td>Static BP, RAS</td>
<td>Static BP, BTB, BTB, BTB, RAS</td>
<td>Dynamic BP, BTB, BTB, BTB, RAS</td>
</tr>
<tr>
<td>Execution priority levels</td>
<td>Machine</td>
<td>User, Machine</td>
<td>User, Machine</td>
<td>User, Supervisor, Machine</td>
<td>User, Supervisor, Machine</td>
</tr>
<tr>
<td>Extensibility/customization</td>
<td>• area-opt</td>
<td>• hi-perf</td>
<td>• FPU</td>
<td>• [in-opt]</td>
<td>• [in-opt]</td>
</tr>
<tr>
<td>Execution units</td>
<td>• MUL/DIV</td>
<td>• FPU</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Memory subsystem</td>
<td>TCM [w/ECC][parity]</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>L1S [w/ECC][parity]</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>L2S [w/ECC]</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MPU</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>MMU, virtual memory</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Debug</td>
<td>Integrated JTAG debug</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>HW BP</td>
<td>1-2</td>
<td>1-8 adv ctrl</td>
<td>1-8 adv ctrl</td>
<td>1-8 adv ctrl</td>
</tr>
<tr>
<td></td>
<td>Performance counters</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td>Interrupt Controller</td>
<td>IRQs</td>
<td>8-32</td>
<td>8-1024</td>
<td>8-1024</td>
<td>8-1024</td>
</tr>
<tr>
<td></td>
<td>Features</td>
<td>basic</td>
<td>advanced</td>
<td>advanced+</td>
<td>advanced+</td>
</tr>
<tr>
<td>SMP support</td>
<td>up to 4 cores with coherency</td>
<td>up to 8-16 cores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IF options</td>
<td>AHB</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>AXI4</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>ACE</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td>•</td>
</tr>
</tbody>
</table>

• default; O – configurable options

ISA options:
- I – Integer instruction set
- E – Embedded subset (16 registers)
- M – Integer multiply and divide
- A – Atomic memory operations, load-reserve/store conditional
- C – Compressed integer instructions, reduces size to 16 bits
- F/D – single/double precision (32/64 bit) floating point

Download SCR1 free at www.github.com/syntacore/sr1
SCR6 (announced at Risc-V summit 2021)

High-perf embedded MCU processor
- RV64IMCAFD ISA
- Dual-issue in-order
- SMP 1-4 cores per cluster
- Dedicated $I/$D up to 64KB each w/ECC
- Per-core or cluster-level TCM
- Shared L2 w/ECC up to 512KB
- Machine and User privilege modes
- Configurable PMP
- Configurable PLIC up to 1023 IRQs
- High-perf dual-issue FPU option
- AMBA compatible i/f
- Advanced debug capabilities

Performance:
- up to 1.5 GHz in 28nm
- 5 CM/MHz/core
- from 500 kGates per core (mem not included)
RV64 SCR7

Efficient mid-range application core

- RV64GC ISA
- SMP up to 8, later 16 cores
- Flexible uarch template, 10-12 stage pipeline
- Stable SCR7 in production:
 - Decode and dispatch up to two instructions per cycle
 - Out-of-order issue of up to four micro-ops
 - Out-of-order completion, in-order retirement
- M-, S- and U-modes
- Virtual memory support, full MMU, Linux
- 16-64KB L1, up to 2MB L2 cache with ECC
- 1.5 GHz+ @28nm
- Advanced debug with JTAG i/f

Performance*, per MHz

<table>
<thead>
<tr>
<th></th>
<th>DMIPS</th>
<th>Coremark</th>
</tr>
</thead>
<tbody>
<tr>
<td>-O2 -best**</td>
<td>3.25</td>
<td>3.80</td>
</tr>
<tr>
<td>-best**</td>
<td>3.80</td>
<td>5.12</td>
</tr>
</tbody>
</table>

* Preliminary data, 2-way implementation, Dhrystone 2.1, Coremark 1.0, GCC 8.1 BM
** O3-funroll-loops -fpeel-loops -fgcse-sm -fgcse-las -flto
SCR7 SpecInt 2017

- Geomean +19.83% vs cortex a-53

SpecInt-2017 (group "refrate")
Frequency normalized relative performance

- 500.perlbench_r
- 505.mcf_r
- 520.omnetpp_r
- 523.xalancbmk_r
- 525.x264_r
- 531.deepsjeng_r
- 541.leela_r
- 548.exchange2_r
- 557.xz_r

Copyright © 2021 Syntacore. All trademarks, product, and brand names belong to their respective owners.
SCR7 FPGA-based SDK

Fully-integrated system based on the off-the-shelf Xilinx VCU118 dev.kit:

- Quad-core, 4GB RAM, up to 100-150 MHz, 1GB Ethernet, storage
- Boots upstream Linux kernel 4.19 (5.15 WiP), Debian
- Integrated toolchain with IDE (supports Linux targets debug)
 - Windows: https://yadi.sk/d/S1Ub16jKX2xLwQ
 - Linux: https://yadi.sk/d/8ZsMgUx381GKiW

HTG-960 based (VU19P) dev.kit:
http://www.hitechglobal.com/Boards/VirtexUltraScale+_VU19P_Board.htm
Key benefits of product offering

Application-class Linux-capable multicore CPU clusters + turnkey customization

- Clean-slate, silicon-proven processor IP in System Verilog
 - One of the broadest offerings in the RISC-V ecosystem
- Turnkey service for CPU specialization
 - Workload analysis, ISA design, RTL, tools, SW porting
- Experienced team with a proven track record (shipping products)
- Easy evaluation and simplified licensing
- Open-source SCR1 rv32i|e[mc] core with maintenance and support
 - Industry-grade, in full wafer production at the customers
Fully featured SW development suite

Stable IDE in production:
- GCC 10.2
- GNU Binutils 2.31.0
- Newlib 3.0
- GNU GDB 8.0.50
- Open On-Chip Debugger 0.10.0
- Eclipse 4.9.0

Hosts: Linux, Windows
Targets: BM, Linux

Also available:
- LLVM 5.0
- CompCert 3.1
- 3rd party vendors

Simulators:
- Qemu
- Spike
- 3rd party vendors

JTAG-based debug solutions:
Supports: Segger J-link, Olimex ARM-USB-OCD family, Digilink JTAG-HS2, more vendors soon
Wide support by 3rd party tools and SW vendors

- Lauterbach Trace32
 https://www.lauterbach.com/frames.html?pro/pro__syntacore.html

- Segger Embedded Studio
 https://wiki.segger.com/Syntacore_SCR1_SDK_Arty

- IAR Embedded Workbench
 https://www.iar.com/iar-embedded-workbench/#!?architecture=RISC-V
IP collateral (what is included)

Standard core package (SCR7)
- RISC-V compatible core
 - RV64GC ISA
 - RTL (encrypted for evaluation stage), suitable for simulation and synthesis
 - Netlist for the required FPGA devices (Xilinx/Altera)
- Simulation and verification environment
 - Testbench, Integration verification environment
 - Architectural and compliance tests suites (pre- and post-si)
- Synthesis support harness
 - Sample scripts, SDC/timing constraints for the required flow
- Reference instantiation examples
- Back-end support @ required process node (PDK access to be provided)
 - Full cycle: synthesis, floor-planning, netlist verification, PaR/CTS/timing closure, DRC, FEV, DFT
- Support for 1 tapeout up to a year is included

FPGA-based SDK
- Sample FPGA project (open design)
- Pre-build FPGA and SW images

SW:
- First stage bootloader (SC-BL)
- Linux for the SDK board, including BSP
- Tests/application samples

Documentation
- SCRx quick-start guide (user manual)
- SCRx EAS (External architecture specification)
- SCRx ISM (Instruction set manual)
- SCRx SDK guide
- Integration verification environment guide
- Tools guide (IDE & CLI)

@extra cost:
- On-site support
- SoC Integration and SW porting
- Hardening

Tools (pre-built & sources)
- GCC based toolchain
 - Compiler, debugger, linker, functional simulator, binutils, newlib, openocd
- Eclipse-based IDE (Linux, Windows)
Summary benefits of tools

Key benefits or Syntacore tools and software

- Fully featured open-source development solution with every license
- Choice of 3rd party tools vendors for standard and specialized RISC-V IP
- Open SDK designs
- Extensive collateral and dedicated support
Getting access/evaluation

SCR1
- SHL-licensed with unrestricted commercial use allowed
 - Commercial SLA-based support is available

SCR 3|4|5|6|7
- Full package* access is available after simple evaluation agreement

For more info: evaluation@syntacore.com

(*) sufficient for evaluation and tapeout
Summary

Syntacore offers high-quality RISC-V compatible CPU IP
• Risc-V Founding member, now premium member, fully focused on RISC-V since 2015
• Silicon-proven and shipping in full-wafer production
• Turnkey IP customization services with full tools/compiler support
• Extensive collateral and dedicated support
• Turn-key design upgrade from Legacy solution
• Drop-in socket compatible replacement, including SW stack
Application-class Linux-capable multicore CPU clusters + turnkey customization, in SV
Thank You