
RISC-V Week, Paris, 2022-05-05

Unlocking open source RISC-V
SoC verification

Michael Gielda, mgielda@antmicro.com

ANTMICRO: COMMERCIAL OPEN SOURCE
SUPPORT & DEVELOPMENT SERVICES

simulation &
co-simulation

linting &
 formatting tools

synthesis &
place and route

automation verification chip design

testing frameworks interface and
interconnect IP

CI flows &
co-design

• Much of Antmicro’s work revolves around open
source FPGA and ASIC tooling development
where we work with partners such as Google,
Western Digital, Microchip and SiFive

• We develop tools for synthesis, place and route,
linting, formatting, simulation & co-simulation,
hardware-software co-design, design verification
& automation

• These tools allow us to effectively build future
proof systems, CI-driven flows and enable
parallelization of development for our customers

Unlocking open source RISC-V SoC verification

• Like Antmicro, CHIPS Alliance believes that on top of
RISC-V, open source silicon requires un-core IP and a
vibrant ecosystem of open source tools

• CHIPS coordinates with RISC-V closely since RISC-V
is our de-facto primary ecosystem

• CHIPS believes open tools are possible and
necessary for unconstrained collaboration, unlocking
software-driven workflows & AI-assisted ASIC design

• We’re hosting OpenROAD/OpenLANE/OpenFASoC
• Home to the open source F4PGA toolchain, the

FPGA Interchange Format
• Home to Chisel and many other HDL-related tools
• Home to our open source verification efforts!

ANTMICRO & CHIPS ALLIANCE

Unlocking open source RISC-V SoC verification

WHY DO WE NEED OPEN SOURCE
UVM / SYSTEMVERILOG SUPPORT?

Unlocking open source RISC-V SoC verification

• While RISC-V is spawning new approaches to HW
design which offer tangible improvements, there is
an immense body of pre-existing work

• Sustainable results require an inclusive approach
towards existing pool of designs and designers

• We need to make it easy to combine and remix
methodologies

Important progress has been made in verification space -
and we’re now analyzing how to deploy this to production
for some limited use cases!
(this still means a lot of work ahead of us)

BRIDGING NEW AND
EXISTING METHODOLOGIES

Unlocking open source RISC-V SoC verification

• Combining commercial ecosystem
with open source tools and methodologies

• Chip-making companies can benefit from open
source while keeping their existing UVM codebase

• Lack of licensing limitations would allow scalable,
reproducible CIs

• Number of open source cores and lots of pre-existing
IP implemented in SystemVerilog, e.g.
▫ SweRV
▫ Ibex
▫ BlackParrot
▫ Core-V

• Building a collaborative ecosystem around ASICs
• Proving open source tools are really possible

WHAT WOULD OPEN SOURCE
UVM/SYSTEMVERILOG SUPPORT ENABLE?

Unlocking open source RISC-V SoC verification

https://github.com/orgs/chipsalliance/repositories?language=&q=swerv&sort=&type=
https://github.com/lowRISC/ibex
https://github.com/black-parrot/black-parrot
https://github.com/orgs/openhwgroup/repositories?language=&q=core-v&sort=&type=

• Identify missing functionalities and features
• Reuse existing solutions
▫ There are many existing projects which

can be improved
• Create well documented and transparent flows
▫ Include automated tests and status

reporting in projects
• Cooperate with others
▫ Gather information on what is needed

• Provide incremental value

HOW TO GET THERE?

Unlocking open source RISC-V SoC verification

WHAT IS MISSING?

Unlocking open source RISC-V SoC verification

• We created a test suite to determine the
SystemVerilog support level in various open
source tools

• Aims to pinpoint all the supported and missing
SystemVerilog features in various tools

• Generates report from last passing master
build at github.com/chipsalliance/sv-tests

• Introduces three types of tests:

▫ Testing individual features
as per the SystemVerilog standard

▫ Existing third party test suites

▫ Selected open source IP cores,
such as SweRV, Ibex and others

CHECK THE SPEC: SV-TESTS

Unlocking open source RISC-V SoC verification

https://github.com/chipsalliance/sv-tests

• One of the biggest missing pieces in open
source open source UVM is a fast, time aware
and event driver simulator

• Verilator was the obvious choice: it’s the fastest
simulator available on the market
▫ no time awareness and events support

though!
• To address this we decided to reimplement the

way Verilator handles simulation scheduling

GET AN EVENT DRIVEN SIMULATOR

Unlocking open source RISC-V SoC verification

• SystemVerilog simulation time is divided into
time slots which are further divided into regions

• Different types of statements fall into different
regions
▫ Normal assignments are in Active,
▫ Non-blocking assignments are in NBA,
▫ Concurrent assertions are in Observed, etc.

• These regions are not simple divisions of time;
the simulation can go back to an earlier region
within a time slot, e.g. if a non-blocking
assignment triggers an active block

• Some events can get delayed to a following time
slot

STRATIFIED SCHEDULER

Preponed

Active

Inactive

Observed

Reactive

NBA

Re-Inactive

Re-NBA

Postponed

previous time slot

next time slot

Unlocking open source RISC-V SoC verification

• So far, Verilator only partially implemented a
stratified scheduler, but only by statically
ordering the generated code

• That is not sufficient in cases where we cannot
predict (during compilation) what events get
scheduled or delayed and when it happens (such
as delays or forks in a deep call stack, or in a
virtual function)

• UVM requires a more dynamic approach that
allows scheduling events at runtime

DYNAMIC SCHEDULING

Unlocking open source RISC-V SoC verification

OUR APPROACH: COROUTINES

• Complete rewrite of the way Verilator schedules
events (in several iterations)

• We use C++ coroutines (from C++20!) to handle
the scheduling and synchronization of an
asynchronous events in the simulation

▫ Coroutines are a form of cooperative
multitasking – and that’s fine for this case!

▫ With coroutines, we don’t have to worry about
multithreading (as much)

▫ The overhead for coroutines is significantly
smaller than threads

• Read more about the technical details in our blog
note

Unlocking open source RISC-V SoC verification

https://antmicro.com/blog/2021/12/coroutines-for-dynamic-scheduling-in-verilator/
https://antmicro.com/blog/2021/12/coroutines-for-dynamic-scheduling-in-verilator/

WHAT IS ALREADY POSSIBLE
module t;

 event ping;

 event pong;

 initial forever begin

 @ping;

 #1;

 ->pong;

 end

 initial forever begin

 #1;

 ->ping;

 @pong;

 end

endmodule

• Delays
• Event variables
• Fork / join
▫ join (wait for all children to finish)
▫ join_any (wait for any one child)
▫ join_none (do not wait, continue

the main process immediately)
• Wait statement
• Constrained randomization
▫ Not related to scheduling, but needed for

UVM
▫ Only basic constraints are supported so far;

the next step is to add support for a real solver

Unlocking open source RISC-V SoC verification

DYNAMIC SCHEDULER EXAMPLES

• We’ve created a public GitHub repository
showing example usage of the new features we
added to Verilator:
github.com/antmicro/verilator-dynamic-scheduler
-examples

• The CI there runs simulations of all the examples
in the repository

Unlocking open source RISC-V SoC verification

https://github.com/antmicro/verilator-dynamic-scheduler-examples
https://github.com/antmicro/verilator-dynamic-scheduler-examples

• Surelog is an open source SystemVerilog 2017
Pre-processor, Parser, Elaborator and UHDM Compiler

• Universal Hardware Data Model (UHDM) is used
to exchange the information about elaborated
SV design between the parser and other tools

• The Surelog->UHDM flow allows fully open source
synthesis of SystemVerilog code thanks to the Yosys
SystemVerilog plugin and fully open source
SystemVerilog verification thanks to a custom Verilator
frontend

• Already in late 2020 we could e.g. parse, synthesize
and simulate OpenTitan’s Ibex core directly from
the SystemVerilog source

UHDM INTEGRATION

Unlocking open source RISC-V SoC verification

http://github.com/alainmarcel/Surelog
http://github.com/alainmarcel/UHDM
https://github.com/antmicro/yosys-uhdm-plugin-integration
https://github.com/antmicro/verilator
https://github.com/antmicro/verilator
https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/
https://antmicro.com/blog/2020/12/ibex-support-in-verilator-yosys-via-uhdm-surelog/

OPEN SOURCE IBEX SYNTHESIS AND SIMULATION
IN VERILATOR/YOSYS VIA UHDM/SURELOG

SystemVerilog
design

Verible?

Surelog

Another parser?

Design expressed
in UHDM

Verilator

Yosys

Another tool?

libuhdmlibuhdm

Unlocking open source RISC-V SoC verification

• By introducing the concept of delayed execution to
Verilator we have enabled:

▫ Event driven simulations
▫ Full Verilog/SystemVerilog testbenches (instead

of C++ testbenches)

• Stratified scheduling now being integrated into
mainline Verilator

▫ Coming soon as Verilator 5!
▫ Will be released together with major changes

regarding the static scheduler (assigning
statements to actual stratified scheduler regions
and executing those regions in an order specified
by the Language Reference Manual)

VERILATOR 5

Unlocking open source RISC-V SoC verification

WHAT ELSE
NEEDS TO BE DONE?

Unlocking open source RISC-V SoC verification

• Extending Verilator with support for more
SystemVerilog features used in UVM such as:

▫ Clocking blocks

▫ Assertions

▫ Class parameters

▫ Cyclic randomization

▫ Unpacked structs
▫ Functional coverage

• Runtime optimization

• Integration with UHDM work
• Identifying issues preventing integration with

verification test suites used by different projects
like e.g. riscv-dv and addressing them

NEXT STEPS

Verilator

UHDM

UVM

Unlocking open source RISC-V SoC verification

https://github.com/chipsalliance/riscv-dv

FUTURE GOALS

• Long-term goal is to enable full UVM support in
Verilator

▫ We are now looking at real life production
grade designs to gauge what more is required
to run their complete validation

▫ If you want to get a study of coverage for your
own use case, let us know

▫ One other obvious focus are open source
designs like SweRV or OpenTitan

• An open source flow for verification should lead
to more open source verification testbenches
and IP being shared!

Unlocking open source RISC-V SoC verification

VHDL SUPPORT

• Evaluating complexity of effort to extend the flow
with full VHDL support

▫ The plan is to reuse existing UHDM frontends
in the tools

▫ We would need to extend existing VHDL
parser/elaborator with UHDM generation
feature

• Considering a few parser/elaborator candidates
for first implementation

• Would allow for interesting use cases for
event-driven Verilator

• Looking for interested parties!

SystemVerilog

Surelog

UHDM

VHDL

VHDL parser
integration

(TODO)

Verilator

Unlocking open source RISC-V SoC verification

SYSTEMC SUPPORT

• Intel, already a CHIPS member, reached out to
contribute their SystemC compiler

• The tool can generate SystemVerilog, meaning
that interoperability is possible without significant
effort

• We could also go directly to UHDM, which might
yield better processing speed/results, but the
“easy” approach looks feasible

• This would provide us with pretty broad
coverage of “traditional” methods of describing
hardware

• Let us know if you are interested in this effort

SystemC

SystemVerilog

Surelog

UHDM

VHDL

VHDL parser
integration

(TODO)

Verilator

Unlocking open source RISC-V SoC verification

https://github.com/intel/systemc-compiler

THANK YOU
FOR YOUR ATTENTION!

