What does the space industry expect from RISC-V?

Airbus Defence and Space

Antoine Certain
RISC-V and open Hardware solutions, Scientific days
Agenda

• What’s constraints for space industry ?
 - Environmental
 - Technical
 - Industrial

• What’s now ?
 - Legacy
 - New space

• What are needs trends ?
 - Functionnal evolutions
 - Reduce development costs
 - Increase modularity

• What’s next ?
What’s constraints for space industry?

Environmental Constrains:

- Radiations
- Energy
- Mechanical and thermal

Tolerance to radiations for On-Board Electronics

Problems
- Destructive effects (latch-up)
- Cumulated radiation dose
- Transients errors due to space particles

Solutions
- Robust silicon technologies
- Fault-tolerant design inside the chips
- Fault-tolerant systems architecture with COTS components

Drawbacks
- Poor electronics components and devices catalogue
- Lower processing performance
- Radiation characterisation & qualification
Energy

- Solar Energy only
- Becomes rare when far from the Sun
- Unpredictable on Planetary surfaces

Mechanical and Thermal constraints

- Vacuum and thermal variations
- Extreme and variable operational conditions
 - Assembly Integration and Tests
 - Ground, air and sea Transport
 - Launch
 - Orbital LEO short night/day cycles, GEO, Deep Space

Environmental Constraints:

- Radiations
- Energy
- Mechanical and thermal
What’s constraints for space industry?

Technical Constraints:

- Time and Synchronisation
- Performances
- Communication
- On-board data handling
- Maintainability

Time and Synchronisation
- Synchronisation on a time reference (e.g. GPS)
- Accuracy of time distribution and synchronisation on board
- Synchronisation with distant systems

Performances
- Increased Attitude and Control systems agility
- Fast growing instruments data processing
- Low performance processors (radiations)

Communication
- Bandwidth availability
- Complex communication paths with ground
- Data protection: data security function management

On-board Data management, routing and storage
- Data rates and volumes increase a lot with new generations of instruments
- On-board Network management, communication protocols

Maintainability
- Need for on-board reprogrammability
 - with software today; also with FPGA's in the near future
What’s constraints for space industry ?

Industrial Constraints:

- Variety of missions
- Make or Buy decision
- Testability
- Quality
- Obsolescence

Variety of missions
- Generic platforms: Requirement domain without precise mission selection
- Standard Product families: customisation for adaptation to mission

Make or Buy decision
- Interfaces standardisation, inter-operable products catalogue
- International partnerships, GEO return, ITAR constraints
- European independency

Testability
- Complexity of systems makes full test coverage difficult
- Improvement of production, integration and validation methods and tools

Quality
- Rigorous standards for development and manufacturing processes
 - cost of non-quality is very difficult to predict and it is not easy to repair defects in space

Obsolescence
- Maintenance of critical components manufacturing capability
- Strategic stocks for key products
Functionnal Overview of an On Board Computer
ARM Based On Board Computer

What’s now?
DAHLIA SOC

ARM-based quad-core CPU

Debug & Trace

Cortex-R52
Cortex-R52
Cortex-R52
Cortex-R52

External Memory

DDR
FLASH

On chip Memory

eRAM
eROM

Enhanced AXI Interconnect Cross-Bar

Embedded FPGA

16 channels

DMA

SoC Services

Clock & Reset
V&T Monitor
Error Mgmt
Boot SpW
Security

GPIO
UART, SPI
CAN
GNSS

SpW RMAP
HSSL (SpFi)
1553 BC & RT
CCSDS TM & TC

What's now?
Zinq Ultrascale Plus
Functionnal

What’s the need trends?

- Improve autonomy
- Improve on board processing
- Reduce Downlink Bandwidth
- Increase on board data handling
- Improving on board data storage
- Improve on board security
What’s the need trends?

- Improve European independency
- Reduce development costs and planning
 - Improve reusability
 - COTS usage
- Reduce Hardware component
 - Mixed criticality
 - Simplify on board communication
My dream

Real time core(s)
- Deterministic
- Dedicated memory access
 -> Dedicated to critical functionalities

Applicative cores
- Rich OS enabled
- Fast memory access
- Memory Management Unit
 L1, L2 caches
 -> Dedicated to mission handling

SOC Management Unit
- Power management
- Time management
- Debug support Unit with traces
- DMA management
- Security Management
- Reconfiguration Management

Network on Chip (aware of interferences)

Memories Controller
- Nor Flash
- Nand Flash
- DDR, SRAM

Hardware accelerator
- For complex algorithms
 (GPU, FPGA, ManyCores)

IO and eFPGA
- Ethernet (TSN), Spacewire, legacy interfaces
What’s next?

- Open
 - Flexibility
 - Connection with others tools
 - Standardized
 - Customizable
- Easy to use
- Not dedicated to one target
Thanks you for your attention